Pmonline.ru

Пром Онлайн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Простой и доступный блок питания

Простой и доступный блок питания 0..50В

Хотелось бы представить вниманию читателя замечательную схему лабораторного блока питания (ЛБП) с регулировкой стабилизированного напряжения 0..50В и регулировкой тока до 1,5А.

Разработка простого и доступного блока питания (ПиДБП 0…50В) велась на форуме сайта «Паяльник» по инициативе пользователя с именем Olegrmz. На момент написания этой статьи, на форуме ветка насчитывала около 500 страниц обсуждения данной схемы и примерно 18 её вариантов. Все варианты рабочие со своими особенностями. Наиболее стабильная и популярная версия простого и доступного блока питания – это версия v16y2. Именно ее я хочу представить вниманию читателя.

Простой и доступный блок питания

Преимуществом схемного решения ПиДБП в отличие от общепринятых схем на операционных усилителях (ОУ) является то, что выходное напряжение может достигать 50В, а не ограничиваться напряжением питания ОУ (32В), как в подавляющем большинстве схем ЛБП.

Стабильность устройства и его повторяемость просто замечательные. Поэтому, я рекомендую читателю собрать этот простой и доступный лабораторный блок питания для своей домашней мастерской.

Схема простого и доступного БП 0…50В (версия v16y2)

Схема ПиДБП простого и доступного блока питания

Схема состоит из следующих узлов: выпрямитель с фильтром, стабилизатор напряжения +12В, стабилизация напряжения, стабилизация тока, индикация, регулирующий узел и защита от перегрева.

Выпрямитель состоит из понижающего трансформатора TV1, диодного моста VDS1 и фильтра C1.

Стабилизатор напряжения +12В выполнен на основе микросхемы VD1 и на транзисторе VT1. Стабилизированным напряжением +12В питается операционный усилитель DA1. Также это значение используется, как источник опорного напряжения в узлах регулировки.

Регулирующий узел состоит из двух транзисторов VT2 и VT4, включенных по схеме составного транзистора для увеличения коэффициента усиления. VT4 является самым нагруженным элементом. На нем рассеивается большое количество тепла, пропорциональное разности между входным и выходным напряжением при протекании через него тока нагрузки. Транзисторами VT2 и VT4 управляет VT3.

Как видно по схеме, транзистор VT2 прямой проводимости (PNP). Ниже представлена схема включения транзистора с обратной проводимостью NPN. Именно под такую структуру (NPN) транзистора VT2 разведена печатная плата (ссылка под статьей).

ПиДБП включение транзистора NPN

Узел стабилизации напряжения выполнен на ОУ DA1.1, который сравнивает часть напряжения с выхода лабораторного блока питания (инверсный вход) с частью опорного значения (прямой вход), а сигнал рассогласования поступает на базу транзистора VT3.

Узел стабилизации тока выполнен на ОУ DA1.2, который сравнивает падение напряжения на шунте R27 (падение на нем пропорционально току нагрузки ЛБП) с частью опорного значения. Сигнал рассогласования поступает на транзистор VT3. Узлы стабилизации тока и напряжении работают параллельно и это плюс в скорости работы системы автоматического регулирования.

Узел индикации выполнен на ОУ DA1.4, работающим как компаратор, который управляет свечением светодиодов HL1 и HL2 в зависимости от режима стабилизации (тока или напряжения). Этот узел не обязателен, но мне очень удобно видеть порог включения режима стабилизации тока при проверке некоторых устройств.

При замкнутом ключе S1 блок питания перестает работать в режиме стабилизации тока, а включается триггерная защита (DA1.2 взаимодействует с DA1.4), которая при превышении установленного порога снижает до нуля выходной ток ЛБП до тех пор, пока не будет разорван ключ S1.

Узел тепловой защиты также не обязателен и монтаж его элементов выполняется по желанию. Выполнен он на операционном усилителе DA1.3. Этот операционный усилитель сравнивает часть опорного значения со значением делителя R31R32. При росте температуры сопротивление R31 уменьшается и на инверсном входе DA1.3 потенциал увеличивается и когда он будет больше чем потенциал на прямом входе (установленное значение с помощью R34) то на выходе DA1.3 появится земля (GND). При этом светодиод HL3 засветится, транзистор VT3, а вслед за ним VT4 и VT2 закроются. На выходе блока питания будет нуль. Это полезная функция, если габариты теплоотвода транзистора VT2 не позволяют долговременно рассеивать необходимую мощность. Также, это полезно, если радиатор силового транзистора установлен внутри корпуса, без принудительного охлаждения.

Подстроечный резистор R22 позволяет выставить максимальное напряжение на выходе блока питания под возможности трансформатора. Его необходимо подстраивать на номинальном токе.

Переменным резистором R26 регулируется ток, а резистором R20 регулируется напряжение.

Диод VD2 защищает элементы схемы от встречного напряжения. Это необходимо, когда к блоку питания подключается аккумулятор или устройство с заряженными емкостями.

Диод VD5 защищает от перепутывания полярности при подключении нагрузки, например того же аккумулятора или заряженной емкости.

Компоненты схемы

Все номиналы указаны на схеме, и если их все соблюсти при сборке, то он запустится без проблем. Также на схеме в скобках указаны номиналы для входного напряжения 50В.

Микросхема DA1 является счетверенным операционным усилителем LM324. Все четыре канала независимы друг от друга. Особенностью этого ОУ является наличие на его входах PNP транзисторов. Поэтому, при замене LM324 необходимо подбирать аналог с наличием биполярных PNP транзисторов на входе, а также, чтобы аналог мог обеспечить близкое к нулю выходное напряжение смещения нуля. Микросхему LM324 можно заменить двумя микросхемами LM358 (потребуется новая разводка печатной платы).

Диодный мост можно собрать из выпрямительных диодов 1N5408 или применить готовый мост типа KBU610 или KBU810. Фильтрующая емкость C1 (10 000мкФ) при заряде будет обеспечивать довольно большой ток через мост, это нужно учитывать.

Для удобства регулирования выходных параметров блока питания необходимо применять переменные резисторы R20 и R26 с линейной зависимостью. Если применить потенциометры с логарифмической зависимостью, то при повороте их ручек на один и тот же угол сопротивление будет изменяться неравномерно. Это особенно заметно, если на корпусе нарисована равномерная (линейная) шкала с цифровыми значениями.

Подстроечные резисторы R22 и R34 лучше применить многооборотные типа 3296W, они позволяют плавно и удобно выполнять настройку устройства.

В качестве R31 я использовал термистор сопротивлением 10кОм с отрицательным температурным коэффициентом.

Транзистор VT2 для печатной платы, приложенной к статье должен быть NPN проводимости. Его номинальный ток коллектора и Uкэ выбирается с запасом. Кроме того, должен быть запас рассеиваемой мощности. Так, при Uвх=50В, Uвых=3В и Iнагр=1,5А рассеиваемая мощность на транзисторе будет равна P=(50В-3В)×1,5А=71Вт. Что очень даже немало. Для такого случая транзистор должен быть рассчитан на рассеиваемую мощность не менее 100-120Вт и иметь хорошее охлаждение (читать ниже).

Читайте так же:
Лучший внешний жесткий диск на 1 терабайт

Я в качестве VT2 установил 2N3055, можно поставить TIP35C или 2SC5200.

Охлаждение

Охлаждать необходимо корпус VT2. Теплоотвод нужно устанавливать снаружи корпуса блока питания для эффективной естественной конвекции, либо необходимо применять активное (принудительное) охлаждение. Площадь радиатора при пассивном охлаждении рекомендую выбирать расчета 10-20см 2 на 1Вт рассеиваемой мощности транзистора, которая равняется P=(Uвх-Uвых)×Iнагр. Если планируется долговременная работа с нагрузкой то берем 20см 2 на 1Вт, а если ЛБП будет использоваться только для проверок или запуска устройств, то можно обойтись и 10см 2 на 1Вт.

Охлаждение 2n3055

Радиатор для ПиДБП

Трансформатор

Вторичная обмотка трансформатора должна быть рассчитана на ток, не меньше максимального тока нагрузки (1,5), а лучше, чтобы он имел запас. Напряжение вторичной обмотки выбирается под нужные параметры ЛБП. Я рекомендую для Uвых=30В применить трансформатор на

24В, так как после выпрямления на емкости С1 на холостом ходу напряжение будет в 1,41 раз больше (34В), а после стабилизатора снизится на несколько вольт. Применение трансформатора с обмоткой

24В избавит от пересчета некоторые элементы схемы. Для Uвых=50В я рекомендую применить трансформатор с вторичной обмоткой 36В.

Также для уменьшения рассеиваемой мощности на регулирующем транзисторе рекомендуется применять трансформатор с двумя-тремя вторичными обмотками и добавить тумблер или коммутатор обмоток. Можно применить трансформатор 12В+12В, и сделать переключатель для переключения режимов регулировки напряжения от 0 до 15В и от 15В до 30В.

Стабилизатор ЛБП можно питать от импульсного источника питания, тогда входную емкость C1 необходимо уменьшить до нескольких сотен микрофарад.

Печатная плата

Печатная плата имеет размеры 72×75мм. Она взята из ветки форума по разработке ПиДБП. Разведена плата без выпрямителя и фильтрующих конденсаторов, то есть, только сам стабилизатор.

Печатная плата простого блока питания

Печатная плата ПиДБП

Номера выводов каналов микросхемы DA1 на схеме и печатной плате разнятся, точнее каналы подключены по принципу разводки печатной платы (как проще, так и подключены). Вообще без разницы, какой канал из четырех будет DA1.1, а какой будет DA1.2 и так далее, главное соблюдать схему подключения.

Для удобства, монтаж необходимо начинать с перемычек и резисторов.

Монтаж компонентов блока питания

Далее монтируются все остальные компоненты, от меньших к большим.

Простой лабораторный БП

Запуск и испытания

При сборке я обнаружил, что на плате почему-то нет выходных емкостей C5 и C7. При испытании ПиДБП пришлось их установить навесом, чтобы быть уверенным, что данные емкости никак не замедляют и не выводят из стабильной работы систему автоматического регулирования. Меня интересовал момент скорости изменения напряжения на выходе ЛБП при регулировке и скорость работы защиты от КЗ, успеет ли она отработать короткое замыкание. При испытаниях защита работала отлично, а также отлично изменялось при регулировке значение Uвых.

Первый запуск блока питания я выполнял от китайского ЛБП (30В), ограничив его выходной ток в районе 50мА, чтобы в случае неправильной работы испытуемого устройства не сжечь его.

После запуска ПиДБП я убедился, что регулировка Uвых производится во всем диапазоне от 0 до 23В. Далее с помощью R22 я поднял Umax с 23В до 28В. Позже под нагрузкой 1А я еще раз выполнил корректировку максимального значения Uвых.

После чего, я приступил к проверке нагрузочной способности. Сначала нагрузил ПиДБП резистором 51Ом, опустив его в ванночку с водой. С помощью вращения потенциометра R26 я убедился в правильном функционировании узла стабилизации тока, значение Iнагр изменяется плавно от 0 до 0,5А.

Далее я выставил на выходе испытуемого устройства 2В и нагрузил резистором 4Ома, который я установил на радиатор. Ручку R26 выкрутил на максимум. Плавно вращая ручку R20 я увеличивал Uвых и наблюдал за нагревом элементов и смотрел по амперметру показания. При достижении значения 1,4А рост тока остановился. То есть максимальный ток нагрузки составил 1,4А.

Испытание простого и доступного блока питания ПиДБП

Можно сделать наоборот, R20 выкрутить на максимум, а R26 в минимум, нагрузить низкоомным резистором (например 4Ома). Плавно вращая R26 проверить ограничение на отметке 1,4А.

Далее при подключенной нагрузке я замкнул выход, ничего плохого не произошло, стабилизация тока работала отлично. После этого я отключил нагрузку и замыкал выход на разных значениях Uвых, стабилизация тока включалась при 1,4А отлично, защищая от пробоя регулирующий транзистор. Последним этапом проверки ПиДБП на КЗ с условием короткого замыкания на выходе, устроенное перед запуском. В этом случае защита функционировала также без нареканий. При замкнутом ключе S1, при достижении установленного порога Iнагр, срабатывал триггер и на выходе блока питания ток не протекал до тех пор, пока ключ S1 не был разомкнут.

Чуть позже я устроил еще немаловажную проверку, подключив на выход аккумулятор 12В 5А при малом Uвых, то есть, организовав для испытуемого устройства встречное напряжение. Диод VD2 со своей задачей справился отлично. Кратковременно подключив аккумулятор обратной полярностью, невзирая на искры, диод VD5 выдержал, хоть и кратковременно. Подразумевается, что между аккумулятором и блоком питания должен устанавливаться предохранитель.

Защита от перегрева настраивается на нужную температуру. Можно нагреть воду в стакане до необходимой температуры, опустить туда корпус термистора и вращением движка R34 добиться начала свечения HL3.

При запитывании ПиДБП от китайского лабораторного блока питания, на выходе при нагрузке 1А с помощью осциллографа С1-94 я пытался посмотреть пульсации, но они настолько малы и с учетом старенького аналогового осциллографа С1-94 я увидел только наводки на щупе.

Выход на осциллографе С1-94 при питании от ИИП

При проверке от трансформатора 24В 1,5А с емкостью 2×4700мкФ пульсации были также незначительны (вертикальная развертка 10мВ на деление).

Карттинка на осциллографе при питании от трансформатора

Умощнение схемы

Я считаю это немаловажная тема, так как многим радиолюбителям нужен лабораторный блок питания с нагрузочной способностью до 3А и более.

Читайте так же:
Жесткий диск как обозначается на компьютере

Умощнение схемы ПиДБП заключается в параллельном соединении дополнительных силовых транзисторов VT2. Количество транзисторов определяется исходя из мощности. Так для блока питания 30В 3А необходимо устанавливать два транзистора 2N3055.

Так как транзисторы имеют разброс параметров, то в разрыв эмиттеров необходимо устанавливать мощные (2Вт) выравнивающие резисторы 0,1Ом. Без выравнивающих резисторов силовые транзисторы могут выйти из строя в виду неравномерно распределенного тока нагрузки между ними.

Вторым этапом умощнения является изменение номинала шунта R27, иначе выходной ток будет ограничен значением 1,4А.

Номинал R27 выбирается исходя из следующего правила: при максимальной нагрузке падение напряжения на R27 должно быть 500мВ.

Для тока 3А сопротивление шунта 0,166Ом (из стандартного ряда 0,15Ом). Для 5А выбираем 0,1Ом.

Емкость C1 выбирается исходя из минимальных требований 2000мкФ на 1А, иначе будут значительные пульсации.

Блок питания на два напряжения

5 вольт – одно из самых широко используемых напряжений. От этого напряжения питается большинство программируемых и непрограммируемых микроконтроллеров, всевозможных индикаторов и тестеров. Кроме того 5 вольт используется для зарядки всевозможных гаджетов: телефонов, планшетов, плееров и так далее. Я уверен, что каждый радиолюбитель может придумать множество применений этому напряжению. И в связи с этим я подготовил для вас три хороших на мой взгляд варианта блоков питания со стабилизированным выходным напряжением 5 вольт.

Первый вариант – самый простой.

Этот вариант отличается минимальным количеством используемых деталей, крайней простотой сборки и невероятной ‘живучестью’ – блок почти нереально убить. Итак перейдем к схеме.

Три хороших блока питания на 5 вольт, принципиальная схема первого варианта

Эта схема срисована с недорогой зарядки телефона, обладает стабилизацией выходного напряжения и способна выдавать ток до 0.5 А. На самом деле блок может выдавать и больше, но при повышении тока на выходе начинает срабатывать защита от перегрузки и выходное напряжение начинает уменьшаться. Защита от перегрузок и КЗ реализована на резисторе 10 ом в цепи эмиттера силового транзистора и маломощном транзисторе s9014. При повышении тока через первичную обмотку трансформатора на эмиттерном резисторе создается падение напряжения, достаточное для открытия s9014, который в свою очередь притягивает базу силового транзистора к минусу, тем самым закрывая его и уменьшая длительность импульсов через первичную обмотку. При изменении номинала данного резистора можно увеличить или уменьшить ток срабатывания защиты. Сильно увеличивать не стоит, так как это повлечет за собой повышение нагрева силового транзистора и увеличит вероятность выхода последнего из строя.

Стабилизация выполнена на распространенном оптроне pc817 и на стабилитроне 3.9 В (при изменении номинала которого можно менять выходное напряжение). При превышении выходного напряжения, светодиод оптрона начинает светиться ярче, вызывая повышение тока через транзистор оптрона на базу s9014 и, как следствие, закрытие силового ключа. При уменьшении выходного напряжения, наоборот, транзистор оптрона начнет закрываться и s9014 не будет обрывать импульсы на базе силового ключа, тем самым увеличивая их длительность и, соответственно, увеличение выходного напряжения.

Особое внимание стоит уделить намотке трансформатора. Это зачастую является фактором, отталкивающим новичков от импульсных блоков питания. Итак, поскольку блок однотактный, нам потребуется трансформатор с немагнитным зазором между половинками сердечника. Зазор нужен для быстрого размагничивания сердечника и для предотвращения вхождения феррита в насыщение. Расчет трансформатора в идеале надо проводить в специальных программах, но для тех, кому этого делать не хочется, скажу, что в таких маломощных блоках питания первичная обмотка состоит из 190-220 витков провода 0.08-0.1мм. Грубо говоря, чем больше сердечник, тем меньше витков. Поверх первички в том же направлении мотается базовая обмотка. Она состоит из 7 – 15 витков того же провода. И в конце уже более толстым проводом мотается вторичка. Число витков 5-7. Крайне важно мотать все обмотки в одном направлении и помнить, где начало и конец. На схеме и на плате (которую можете скачать тут ) точками указаны начала обмоток.

По схеме тут больше добавить нечего, она довольно простая и не требует особых навыков для сборки. Все компоненты можно изменять в пределах 25%, блок прекрасно будет работать. Силовой транзистор можно ставить любой обратной проводимости, соответствующей мощности и с расчетным напряжением коллектора не менее 400 вольт. Базовый транзистор – любой маломощный NPN с такой же цоколёвкой, как и s9014.

Данный блок мощно применять там, где не нужен высокий ток, а нужна компактность, например для питания Arduino или для зарядки устройств с аккумуляторами небольшой ёмкости. Из плюсов данного бп можно отметить компактность, наличие защиты и стабилизации и, конечно, простоту сборки. Из минусов, пожалуй, только малая выходная мощность, которую кстати можно поднять, увеличивая ёмкость входного фильтрующего конденсатора.

Блок кстати выглядит так:

Три хороших блока питания на 5 вольт, внешний вид первого варианта Три хороших блока питания на 5 вольт, внешний вид первого варианта

Три хороших блока питания на 5 вольт, внешний вид первого варианта

Второй вариант – более мощный.

Этот вариант очень похож на предыдущий, но мощнее. Блок имеет доработанную обратную связь и, следовательно, лучшую стабилизацию. Давайте взглянем на схему.

Три хороших блока питания на 5 вольт, принципиальная схема второго варианта

Схема представляет собой блок дежурного питания компьютерного бп. В отличие от предыдущей схемы в этой более мощный силовой транзистор, большая ёмкость входного фильтрующего конденсатора и, самое главное, трансформатор с большей габаритной мощностью. Всё это как раз и влияет на выходную мощность. Ещё в данной схеме, в отличие от первой, сделана нормальная стабилизация на TL431 – источнике опорного напряжения.

Принцип работы тут такой же, как и у предыдущего варианта. Через резистор 560 кОм на базу силового ключа подается начальное напряжение смещения, он приоткрывается и через первичную обмотку начинает течь ток. Нарастание тока в первичке вызывает нарастание тока во всех остальных обмотках, значит ток, возникающий в базовой обмотке, будет ещё сильнее открывать транзистор, и этот процесс продолжиться до тех пор, пока транзистор полностью не откроется. Когда он откроется, ток через первичку перестанет изменяться, а значит на вторичке перестанет течь и транзистор закроется и цикл будет повторяться.

Читайте так же:
Материнская плата asus p8h61 m lx2

Про работу защиты по току и стабилизации я подробно рассказал выше и не вижу смысла повторяться, так как тут всё работает точно так же.

Поскольку этот блок питания сделан на основе дежурки компьютерного блока, трансформатор я использовал готовый и не перематывал. Трансформатор EEL-19B. Расчетная габаритная мощность 15 – 20 Вт.

Как и в предыдущей схеме номиналы компонентов можно отклонять в пределах 25%, так как в разных компьютерных бп эта схема прекрасно работает с разными компонентами. Этот экземпляр, благодаря выходному току в 2 А можно использовать как зарядку для телефонов и планшетов или для прочих потребителей, требующих большой ток. Из плюсов данной конструкции можно отметить простоту добычи радиодеталей, ведь наверняка у каждого есть нерабочий блок питания от старого компа или телевизора, а там элементарной базы хватит на 3 – 4 таких бп. Так же плюсом можно считать немалый выходной ток и неплохую стабилизацию. Из минусов справедливо можно отметить размер платы (она довольно высокая из-за трансформатора) и возможность свиста при холостом ходу. Свист может появиться из-за неисправности какого-либо элемента, либо просто из-за слишком низкой частоты преобразования на холостом ходу. Под нагрузкой частота увеличивается.

Блок выглядит вот так:

Три хороших блока питания на 5 вольт, внешний вид второго варианта Три хороших блока питания на 5 вольт, внешний вид второго варианта

Три хороших блока питания на 5 вольт, внешний вид второго варианта

Третий вариант – самый мощный.

Этот вариант для тех, кому нужна огромная мощность и прекрасная стабилизация. Если вам не жалко пожертвовать компактностью, этот блок специально для вас. Итак, смотрим схему.

Три хороших блока питания на 5 вольт, принципиальная схема третьего варианта

В отличие от предыдущих двух вариантов, в этом применяется специализированный ШИМ – контроллер UC3843, который, в отличие от транзисторов, как ни как умеет менять ширину импульсов и специально сделан для применения в однотактных блоках питания. Также у UCшки частота не меняется в зависимости от нагрузки и её можно четко рассчитать в специализированных калькуляторах.

Итак принцип работы. Начальное питание поступает через резистор 300 кОм на 7 ножку микросхемы, она запускается и начинает генерировать импульсы, которые выходят с 6 ножки и идут на полевик. Частота этих самых импульсов зависит от элементов Rt и Ct. С указанными компонентами частота на выходе 78,876 кГц. Вот кстати устройство микросхемы:

Три хороших блока питания на 5 вольт, UC3843 внутреннее строение

На этой микросхеме очень удобно реализовывать защиту по току, у неё для этого есть специальный вывод – current sense. При напряжении больше 1 вольта на этой ножке сработает защита и контроллер снизит длительность импульсов. Стабилизация здесь сделана при помощи встроенного усилителя ошибки current sense comparator. Поскольку на 2 выводе у нас 0 вольт, усилитель error amp. Всегда выдает логическую единицу и она идёт на вход усилителя current sense comparator, формируя тем самым опорное напряжение 1 вольт на его инвертирующем входе. При превышении напряжения на выходе блока питания, фототранзистор оптрона открывается и шунтирует 1 вывод микросхемы на минус. При этом снижается напряжение на инвертирующем входе current sense comparator, а так как на его не инвертирующем в момент открытия транзистора нарастает напряжение, то в какой то момент оно превысит напряжение на инвертирующем входе (при КЗ случается то же самое) и current sense comparator выдаст логическую единицу, что в свою очередь приведет к уменьшению длительности импульсов и, в конечном итоге, к снижению напряжения на выходе блока питания. Стабилизация в данном блоке питания очень хорошая, чтоб вы понимали, насколько она хорошая, при подключении резистора 1 Ом на выход, напряжение падает всего на 0.06 вольта, при этом на нём рассеивается 25 Вт тепла и он сгорает через пару секунд. Вообще этот блок может выдавать и 30 Вт и 35, так как в роле ключа здесь применён полевой транзистор. На схеме указан 4n60, но я поставил irf840, так как у меня их много. Микросхема может выдавать на управление полевиком ток до 1 А, что дает возможность без дополнительного драйвера управлять довольно мощными полевыми ключами.

Трансформатор для этого блока был взять от сгоревшей 100-ваттной энергосберегающей лампы. Первичка состоит из 120 витков проводом 0.3 мм, обмотка самозапитки – 20 витков тем же проводом и силовая выходная обмотка – 5 витков двумя проводами 1 мм. По выходу стоит полноценный фильтр помех, позволяющий применять этот бп там, где помехи никак не нужны.

Применять бп можно в очень мощных зарядниках для гаджетов. Он спокойно может заряжать 6 и даже 7 устройств одновременно, при этом обеспечивая стабильное 5 В на выходе.

Выглядит это всё примерно так:

Три хороших блока питания на 5 вольт, внешний вид второго вариантаТри хороших блока питания на 5 вольт, внешний вид второго варианта

А вот их относительные размеры:

Три хороших блока питания на 5 вольт, внешний вид второго вариантаТри хороших блока питания на 5 вольт, внешний вид второго варианта

Ну и на этом всё. Если остались какие-либо интересующие вас моменты, о которых я не сказал, задавайте их мне на почту Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

Линейные блоки питания: простота конструкции и ремонта

Линейные блоки питания-01

Линейные блоки питания — это источник питания, не содержащий никаких коммутационных или цифровых компонентов. Он обладает некоторыми замечательными характеристиками по сравнению с импульсными блоками питания, такими как очень низкий уровень шума и пульсаций, невосприимчивость к помехам от сети, простота, надежность, простота конструкции, расчета и ремонта.

БП также могут генерировать как очень высокие напряжения (тысячи вольт), так и очень низкие напряжения (менее 1V). Линейные блоки питания могут легко генерировать несколько выходных напряжений. С другой стороны, они большие по размеру, тяжелые и требуют большего теплоотвода. Линейные источники питания существуют уже несколько десятилетий, были созданы задолго до появления полупроводников.

Что такое линейные блоки питания

Линейные блоки питания-1

Линейные блоки питания могут быть фиксированными, например, как источник питания 5V, который может потребоваться для логической схемы, или несколько фиксированных блоков питания, необходимых для ПК (+5, +12 или -12V). На настольном лабораторном блоке питания вы можете использовать источник переменного тока. В дополнение к одиночным источникам вы также можете получить двойные схемы питания, например, для схем операционного усилителя ±15V, и даже БП двойного контроля, которые синхронизированы по напряжению друг с другом.

Читайте так же:
Для чего нужен принт сервер

Принципиальная схема

Некоторые примеры:

  • +5V логические и микропроцессорные схемы
  • +12V LED освещение, общая электроника
  • Схемы операционного усилителя ±15V
  • Стендовое испытательное питание 0-30V
  • +14,5V зарядное устройство

В этой статье мы рассмотрим отдельные компоненты блока питания, а затем с нуля разработаем небольшой блок питания 12V и регулируемый двойной блок питания 1–30V.

Компоненты линейного блока питания

  • Секция ввода сети содержит компоненты подключения к электросети, обычно выключатель, предохранитель и контрольную лампочку. Используйте хорошее заземление и изолируйте все силовые части внутренней проводки изоляционным материалом для защиты от случайного контакта.
  • Трансформатор выбирают в соответствии с требуемым выходным напряжением и эффективно изолирует все другие цепи от сетевых контактов. Трансформатор может иметь несколько отводов первичной обмотки, чтобы обеспечить различное входное напряжение сети, и несколько отводов вторичной обмотки, соответствующих требуемому выходному напряжению. Кроме того, между отводами первичной и вторичной обмоток имеется экран из медной фольги, который способствует уменьшению емкостной связи с высокочастотным сетевым шумом.
  • Выпрямитель может быть таким же простым, как одинарный диод (не подходит), двухполупериодный мост с центральным ответвлением или двухполупериодный мост. Следует использовать выпрямительные диоды более мощные, чем рассчитывалось. По моему опыту ремонта многих неисправных блоков питания, проблемы обычно возникают из-за выхода из строя диода, которые горят либо из-за слишком большого тока, либо из-за скачков напряжения в сети.
  • Учитывая это, выберите диод с высоким PIV (пиковое обратное напряжение). При установке диодов держите выводы на длинной стороне, так как именно здесь рассеивается большая часть их тепла. В высоковольтных источниках питания часто встречаются небольшие конденсаторы, подключенные параллельно диодам, чтобы помочь им быстрее восстанавливаться.
  • Конденсатор является постоянно работающим компонентом и должен заряжаться до пика вторичного напряжения (Vsec*1,414), а затем быстро отдавать накопленную энергию в нагрузку. Конденсаторы из алюминиевой фольги представляют собой рулон бумаги из алюминия, заполненный маслом. Однако, они имеют свойство со временем высыхать и, как следствие, терять свою емкость. Если возможно, разместите их подальше от источников тепла при компоновке.
  • Танталовые конденсаторы имеют гораздо более низкое последовательное сопротивление (эквивалентное последовательное сопротивление), поэтому лучше справляются с пульсациями. Вы можете использовать их в цепи регулятора. При разводке схемы, старайтесь свести все заземления в одну точку. Регулятор также должен иметь небольшой выходной ток, когда он не находится под нагрузкой; 1кОм будет достаточно.
  • На рисунке ниже зеленая кривая представляет собой то, как форма волны выглядела бы без конденсатора, а красная форма волны — это «заряд» конденсатора на каждом полупериоде, а затем разряд из-за тока нагрузки. Результирующая форма волны — это пульсирующее напряжение.

линейные блоки питания-4

Линейные блоки питания — проектирование

Разработка линейного блока питания похожа на чтение на иврите: вы начинаете с конца и продвигаетесь к началу. Ключевая спецификация — это напряжение на выходе, которое мы хотим иметь, и какую величину тока мы можем получить от него без падения напряжения. В этом проекте давайте нацелимся на 12V при токе 1 А и 3V на регуляторе. У любого регулятора должна быть определенная необходимая разница между входным и выходным напряжениями для правильной работы. Если не указано иное, предположите, что это минимум 3V. Некоторые из используемых здесь регуляторов рассчитаны только на 2V.

линейные блоки питания-5

Если на выходе нам нужно 12V, то на конденсаторе нужно 12 + 3 = 15V. Теперь, когда этот конденсатор заряжается и разряжается, в нем должна присутствовать переменная составляющая, то есть пульсация напряжения. Чем больше ток, потребляемый конденсатором, тем хуже пульсации, и это тоже нужно учитывать. При выборе значения 10%, т.е. 1,2V (размах), ограничение рассчитывается следующим образом:

формула.1

где f равно 50 или 60 в зависимости от частоты вашей сети. Следовательно, нам необходимы:

фрмула.2

Это возвращает нас к диодам. Поскольку диоды подают не только ток нагрузки, но и ток заряда конденсатора, они будут использовать больший ток.

В двухполупериодном мосту ток составляет 1,8*I нагрузки. На центральном отводе, это 1,2*I нагрузки. Учитывая это, мы должны использовать диоды не менее 2 А.

Теперь мы переходим обратно к вторичной обмотке трансформатора и ее удельному напряжению. В любой надежной системе мы должны учитывать допуски. Если мы будем следовать только минимальным требованиям к конструкции, вход регулятора может упасть ниже уровня падения напряжения, что окажет значительное влияние на сеть. В коммерческих проектах обычно указывается ± 10%, поэтому, если у нас напряжение 230 В, это означает, что оно может упасть до 207V.

Таким образом, необходимое напряжение на вторичной обмотке будет следующим:

где 0,92 — КПД трансформатора, а 0,707 — 1/√2.

Vreg — падение напряжения регулятора, Vrect — падение напряжения на 2 диодах, которое составляет 2*0,7 для цепи центрального отвода и 4*0,7 для полного моста. Пульсации напряжения V было указано как 10% от 12V или 1,2V, поэтому:

БП-6

Это означает, что готового трансформатора на 15V должно хватить. Бывает, что вы не можете найти подходящий трансформатор, но есть в наличии другой, с более высоким напряжением. Обратной стороной этого является то, что на стабилизаторе будет более высокое напряжение и, как следствие, большая мощность, рассеиваемая его радиатором.

Последнее, что нужно сейчас указать, — это габаритная мощность трансформатора в ВА. Это простая и распространенная ошибка — думать, что ВА будет Vsec*Iload, т.е. 15*1 = 15VA. Но мы не должны забывать, что трансформатор также заряжает конденсатор, поэтому в зависимости от конфигурации, нагрузка 1,2 или 1,8*I означает большую разницу, то есть 1,8*1*15 = 27 ВА.

На этом конструирование завершается. А как насчет предохранителя? Это целая наука, но для этого простого блока питания я бы оценил его в 2 раза больше первичного входного тока. Таким образом, в данном случае ВА равно 27, а напряжение сети составляет 230V, а I=2*27/230 = 250 мА.

Теперь мы можем добавить в регулятор последние несколько компонентов:

линейные блоки питания-7

Для C1 мы рассчитали его на 4200 мкФ. Но поскольку регулятор удалит большую часть пульсации, она может быть меньше или вдвое меньше той, что составляет 2200 мкФ. Назначение C2 и C3 — обеспечение стабильности и помехоустойчивости регулятора. Конденсаторы C2 10 мкФ и C1 1 мкФ. В идеале эти емкости должны быть танталового типа, но если вы вынуждены использовать алюминий, вам следует удвоить значение.

Шунтирующим диодом D3 часто пренебрегают, но он важен. Если произойдет короткое замыкание на входе регулятора, любая накопленная емкость в нагрузке Vcc, включая C3, разрядится на заднюю часть регулятора и, возможно, спалит его. Но D3 спасает от такой ситуации.

Теперь давайте заменим фиксированный регулятор на регулируемый на основе популярного и простого в использовании LM317 и добавим дополнительную отрицательную версию LM337, чтобы сформировать двойной регулируемый блок питания. Обратите внимание, что мы использовали трансформатор с центральным отводом, а также полный мостовой выпрямитель. Следующие примечания в равной степени относятся к отрицательной половине блока питания. Единственное, что осталось рассчитать — это R6 и R7.

Если вы сделаете R6 = 220, тогда для любого напряжения между Vmax и Vmin, R7 = (176*Vout) — 220. Итак, если вы хотите 9V, R7 будет 176*9 — 220 = 1k4. Вы также можете использовать двойной подстроечный резистор от 5 до 10kОм (линейный) для одновременной регулировки обеих сторон. Трансформатор с вторичной обмоткой 25/0/25 подойдет. C8 и C9 обеспечивают помехоустойчивость и могут составлять 10 мкФ. C10 и C11 — 1 мкФ, а C4 и C7 — 1000 мкФ. Минимальное выходное напряжение составляет около 1,25V.

Принцип работы бестрансформаторного блока питания на гасящем конденсаторе

Не для кого не секрет, что источник вторичного электропитания является неотъемлемой частью любого прибора. В данной статье я постараюсь описать довольно распространенный тип источников питания — бестрансформаторные на гасящем конденсаторе.

Основными достоинствами его являются малые габариты, дешевизна и простота устройства, именно по этому его часто используют например, в терморегуляторах тёплого пола, блоках управления бытовыми холодильниками, блоках дистанционного управления люстрами, базы электрочайников с сенсорным управлением и подобных малогабаритных устройствах с сетевым питанием. Не смотря на все положительные качества есть и недостатки, пожалуй самый большой из которых это отсутствие гальванической развязки с питающей сетью и невысокий ток нагрузки.

Для начала рассмотрим типовую схему такого источника

фото1.jpg

Это самый стандартный вариант, встречающийся в 80% случаев, в остальных 20% могут присутствовать изменения которые не меняют принципа диагностики и ремонта.

Назначение элементов схемы:

-> Резистор(R1) является токоограничивающим, он ограничивает ток заряда конденсатора в момент включения в сеть т.к. разряженный конденсатор имеет низкое сопротивление, а следовательно потребляет значительный ток, так же в некоторых схемах он используется разрывной и одновременно служит плавким предохранителем
-> Конденсатор (С1) является основным элементом схемы. За счет своего реактивного сопротивления он гасит излишний ток. Напряжение же получается лишь тогда, когда появляется нагрузка, его величина подчиняется закону ома.
-> Резистор(R2) – разряжающий. Он служит для того чтобы разрядить конденсатор, иначе при отключении от сети вилка устройства будет биться током, во многих схемах не имеющих разъемных соединений, например в термостате теплого пола, датчиках движения его не ставят.
-> Диодный мост(Br1) служит для выпрямления тока, в целях экономии его часто заменяют на однополупериодный выпрямитель состоящий из одного диода.
-> Конденсатор(С2) необходим для сглаживания пульсаций выпрямленного тока.
-> Стабилитрон(D1) стабилизирует напряжение. Т.к. конденсатор ограничивает ток, то напряжение в отсутствии нагрузки было бы равно сетевому, а так же при изменении тока нагрузки скакало в широких пределах, стабилитрон же является постоянной нагрузкой в цепи и не позволяет напряжению превышать определенный порог, равный его напряжению стабилизации

Самая частая неисправность с которой подобные устройства заходят на ремонт «Не включается, не светится» и подобные выражения, которые сообщает клиент мастеру.
При данных признаках в большинстве случаев происходит пробой стабилитрона, т.к. он «сдерживает» напряжение при изменении нагрузки или скачках напряжения в сети, а в отсутствии нагрузки вся выработанная мощность БП рассеивается на нем в виде тепла.

С такой проблемой был принят в ремонт термостат тёплого пола Electrolux

фото2.jpg

Подключаем к питанию, проводим замеры питающего напряжения. Удобнее и быстрее всего произвести замер в очевидных точках, если есть микросхемы, на питающих выводах, на сглаживающем конденсаторе, и т. д.

фото3.jpg

Когда выяснено, что проблема с питающими линиями, более детально осматриваем цепи питания и воспроизводим схему питания устройства

фото4.jpg

фото5.jpg

фото6.jpg

Данная схема очень типичная, кроме наличия 2 стабилитронов, включенных последовательно, Это необходимо для питания напряжением 12В цепей управления и 17В для запитки реле.(Реле в этом регуляторе используется на 24В, выбранное производителем пониженное напряжение 17В позволяет реле уверенно срабатывать и при этом иметь минимальный нагрев)

Диагностируется данная проблема просто: Находим стабилитрон и мультиметром в режиме прозвонки производим измерение на его выводах При исправном стабилитроне на экране прибора будет какое либо значение много больше нуля, при не исправном раздастся писк свидетельствующий о коротком замыкании.
Если при диагностике обнаружен перегоревший плавкий предохранитель, то в первую очередь проверяем сам гасящий конденсатор на пробой.

Далее удаляем стабилитрон и прозваниваем без него. Короткое скорее всего пропадёт.

фото7.jpg

Так же, чтобы убедиться проверяем стабилитрон.

фото8.jpg

фото9.jpg

А далее заменяем его на исправный, если есть следы свидетельствующие о перегреве (потемнение платы) то заменяем его на стабилитрон с большей мощностью рассеяния или заменяем на включенные параллельно с выравнивающими резисторами

фото10.jpg

Далее проверяем результат нашего ремонта
При включении в сеть загорелся светодиод «Нагрев» и отчетливо слышен щелчок реле.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector