История науки и техники Com New
История науки и техники Com New
Накопители информации на жестких магнитных дисках (НЖМД), также как и НГМД, относятся к внешним ЗУ и предназначены для долговременного хранения больших объемов информации. НЖМД относятся к ЗУ с прямым (произвольным) доступом к данным и подразделяются на внутренние, устанавливаемые в системный блок компьютера, и внешние (переносные) по отношению к системному блоку.
В настоящее время пять ведущих фирм в области производства НЖМД, таких как Seagate, Maxtor, Western Digital, Hitachi и Samsung, производят НЖМД разных объемов, от десятков и сотен гигабайт, в соответствии с рядом: 20, 30, 40, 60, 80… 200 Гбайт и т. д. Накопители информации на жестких магнитных дисках (HDD – Hard Disk Drive), которые также называют винчестерами, являются обязательным компонентом ПК. Название «винчестер» применительно к НЖМД было впервые использовано компанией IBM в 1973 г.
Запись и считывание информации в НЖМД реализуется также, как в НГМД, посредством электромагнитного способа, т. е. информация записывается на магнитное покрытие диска и считывается с него.
Конструктивно НЖМД выполнен в виде электронно-механического единого устройства, которое устанавливается в системный блок компьютера. В корпусе этого устройства установлены и объединены такие блоки и элементы, как носители информации (диски), двигатель дисковода, управляющий двигатель, электромагнитные головки записи и считывания информации, устройство позиционирования электромагнитных головок и электронный блок, обеспечивающий обработку данных и управление механическими устройствами НЖМД, а также микросхемы кэш-памяти. Упрощенная конструкция НЖМД представлена на рис. 6.8. Если в НГМД применяется один гибкий диск, то в НЖМД используется несколько дисковых пластин, расположенных одна над другой. Диски изготовлены из жесткого материала, в основном алюминия, который покрыт магнитным слоем. Диски заключены в герметически закрытый корпус, что практически изолирует их от внешней среды и предотвращает попадание пыли или других частиц, которые могут повредить магнитную поверхность дисков или электромагнитные головки. Для доступа к информации в НЖМД один двигатель дисковода вращает пакет дисков, а управляющий устанавливает головки в место считывания или записи информации. У каждого диска имеется своя пара электромагнитных головок, которые приводятся в движение и позиционируются при помощи управляющего (шагового) двигателя. При этом позиционирование одной головки вызывает аналогичное перемещение и всех остальных.
Рис. 6.8. Упрощенная конструкция НЖМД
Все современные НЖМД имеют в своем составе микросхемы кэш-памяти объемом от 2 до 8 Мбайт. Наличие кэш-памяти позволяет повысить производительность НЖМД за счет хранения в ней промежуточных данных, необходимых МП в процессе обработки информации. Обмен информацией между НЖМД и МП компьютера осуществляется через контроллер НЖМД. Контроллер НЖМД представляет собой микрокомпьютер специализированного назначения, который обеспечивает обмен информации между НЖМД и МП по определенным правилам и протоколам, называемых интерфейсом.
Для внутренних НЖМД в настоящее время широко используется интерфейс IDE (Integrated Disk Electronic) и быстродействующий интерфейс SCSI (Small Computer System Interface).
Перечислим основные характеристики НЖМД:
• объем памяти (информационная емкость) десятки и сотни гигабайт;
• время доступа, т. е. интервал времени между моментом, когда микропроцессор запрашивает данные с диска, и моментом их выдачи. Среднее время доступа для современных НЖМД 7–9 мс;
• средняя скорость считывания и записи информации – составляет 60 Мбайт/с;
• скорость вращения шпинделя дисков от 5400 до 7200 об./мин;
• объем кэш-памяти 2–8 Мбайт.
Таким образом, если сравнивать характеристики НГМД и НЖМД, то последние имеют преимущества перед первыми по трем основным характеристикам: объему памяти, скорости обмена информацией (скорости записи и считывания информации) и времени доступа.
Также как и для дискеты, для записи информации на жесткий магнитный диск и ее считывания, диск должен быть отформатирован, т. е. на жестком магнитном диске должна быть создана физическая и логическая структура. Первоначальное физическое форматирование жесткого диска осуществляет фирма – производитель НЖМД.
Формирование физической структуры жесткого магнитного диска, также как и гибкого, состоит в создании на диске концентрических магнитных дорожек (треков), которые в свою очередь делятся на сектора и кластеры (см. рис. 6.6). Для этого в процессе форматирования диска магнитные головки дисковода расставляют в определенных местах магнитного диска соответствующие метки.
Форматирование жесткого диска может быть реализовано и с помощью специальных компьютерных программ. В ОС Windows ХР имеется программа, позволяющая осуществить форматирование жесткого магнитного диска, форматирование производится так же, как для гибкого магнитного диска (см. рис. 6.5).
Логическая структура жесткого диска отличается от логической структуры гибкого диска, поскольку формируется с помощью файловых систем – FAT16, FAT32, NTFS. Для логической структуры жесткого диска характерно то, что минимально адресуемой областью памяти является кластер, который может содержать несколько секторов. Размер кластера определяется типом используемой файловой системы (см. табл. 6.3–6.5) и зависит от объема жесткого диска. Файлам при этом всегда выделяется целое число кластеров.
Для поиска файлов по их имени на жестком диске файловая система автоматически создает каталог и таблицу размещения файлов.
Как уже отмечалось в п. 6.5, в файловых системах FAT16, FAT32, NTFS предусмотрена возможность с помощью специальной системной программы проводить условное разбиение жестких дисков на несколько логических дисков. Полученные при разбиении жесткого диска логические диски не существуют как отдельные физические устройства, а представляют лишь часть одного физического диска. Такое разбиение позволяет более рационально использовать жесткий диск, так как при этом каждый логический диск имеет собственный каталог и таблицу размещения файлов. В результате этого на каждом логическом диске действует своя система адресации и потери из-за размеров кластеров становятся меньше. Кроме того, такое разбиение полезно, если на компьютере работают несколько пользователей и каждому принадлежит свой логический диск.
Логическим дискам присваиваются имена, в качестве которых используются буквы латинского алфавита [С: ], [D: ], [Е: ], [F: ] и т. д.
Процедуры записи информации на жесткий магнитный диск и считывания пользовательской информации аналогичны процедурам, используемым для записи информации на гибкий диск и считывания с гибкого диска.
Удаление ненужных файлов и папок с НЖМД производится так же, как и в НГМД. Однако после подтверждения удаления файлов или папок они не будут удалены в НЖМД (при условии, что не установлена опция уничтожения файлов сразу после удаления, не помещая их в корзину), а только перемещены в папку «Корзина», из которой затем их можно будет восстановить.
Жесткий диск
Жесткий диск — это накопитель информации, запоминающее устройство, основанное на принципе магнитной записи, обеспечивающее произвольный доступ.
В отличие от гибкого носителя, запись в этом случае ведется на жесткие пластины — диски, покрытые слоем ферромагнитного вещества. Доступ к информации обеспечивается при помощи магнитных головок, движущихся на расстоянии 0,1 мк от вращающихся пластин.
Основным назначением жесткого диска является комплектация стационарных компьютеров с целью хранения данных и программ. Изделия бывают внутренними и внешними — оснащенными жестким корпусом и системой охлаждения.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Жесткий диск имеет несколько названий. Наиболее распространенные из них: винчестер, накопитель на жестких магнитных дисках — НЖМД, hard magnetic disk drive — HMDD, hard disk drive — HDD.
Устройство HDD, основные составляющие
Основными составными частями HDD являются гермозона и электронный блок.
Гермозона
Гермозона состоит из:
- Корпуса, сделанного из прочного сплава.
- Дисков с магнитным покрытием.
- Блока головок с позиционирующим устройством.
- Электропривода шпинделя.
В некоторых изделиях между пластинами дисков размещен сепаратор — разделитель, изготовленный из алюминия или пластика. Его основная функция — выравнивание воздушных потоков в гермозоне.
Устройство позиционирования или «актуатор» — это малоинерционный соленоидный двигатель, состоящий из неподвижной пары постоянных магнитов и катушки на подвижном кронштейне блока головок. Совместно с системой считывания и контроллером элемент образует сервопривод.
Блок электроники
Блок электроники включает:
- Плату управления, расшифровывающую сигналы позиционирования головок, управляющую приводами дисков и головок, усиливающую сигналы считывания, записи.
- ПЗУ — постоянное запоминающее устройство, хранящее управляющие программы для блоков цифровой обработки сигнала, служебные данные жесткого диска.
- Буферную память, введенную в состав для сглаживания разницы скоростей работы накопителя и интерфейсной части.
- Блок цифровой обработки сигнала, осуществляющий очистку считанного аналогового сигнала, декодирование, извлечение цифровой информации.
- Интерфейсный блок, обеспечивающий сопряжение электроники винчестера с системой компьютера.
Существует несколько видов интерфейсов — способов взаимодействия жесткого диска с материнской платой. К наиболее востребованным относятся SATA третьего поколения, серверный SAS.
Основные характеристики жестких дисков
Современные HDD производятся в 2 форм-факторах: 2,5” и 3,5”. Первый отличается компактностью, быстрым действием, экономным потреблением энергии. Второй вмещает больший объем информации.
Кроме форм-фактора, к определяющим характеристикам жесткого носителя информации относят:
- Объем диска. Средним значением сегодня является 3-6 терабайт, но существуют носители емкостью 10 терабайт и более.
- Скорость вращения шпинделя, определяющую оперативность записи и чтения.
- Максимальную скорость передачи данных.
- Назначение. К примеру, для круглосуточной работы в составе видеосистемы или для выполнения стандартных функций записи и чтения.
- Поддержку NCQ, способную ускорить работу с носителем посредством оптимизации очереди команд.
- Объем кэш-памяти, необходимой для буферизации данных.
- Разновидность разъема.
Важным параметром является уровень шума во время работы, так как некоторые устройства способны создавать значительные шумовые помехи.
Из не относящихся к технической стороне вопроса характеристик выделяют ударостойкость. Ее значение для обычных моделей составляет 40G. При серьезных нагрузках отдают предпочтение дискам с большей прочностью на удар.
Как осуществляется запись и чтение информации
Принцип работы винчестера схож с функционированием магнитофона. При записи воздействующее на ферромагнитное покрытие переменное магнитное поле изменяет направление вектора намагниченности доменов в соответствии с изменением величины сигнала.
В процессе считывания перемещение доменов приводит к изменению магнитного потока в головке, из-за чего в катушке за счет электромагнитной индукции возникает переменный электрический сигнал.
Информация записывается с применением небольшой головки, которая, проходя над диском, намагничивает дискретные области — домены. Если эти домены имеют горизонтальное строение, то говорят методе продольной записи. Если биты информации сохраняются в вертикально расположенных доменах, то метод записи называют перпендикулярным.
Логическая структура и принцип работы жесткого диска
При описании логической структуры внимание фокусируют на форматировании, которое может быть:
- Высокоуровневым или логическим.
- Низкоуровневым или физическим.
Высокоуровневое форматирование призвано использовать системную область, состоящую из:
- корневого каталога;
- таблицы размещения файлов;
- таблиц разделов;
- загрузочного сектора.
Запись данных выполняется частями с параллельным созданием отдельного, защищенного логического раздела. Поэтому при возникновении общих ошибок записанная таким образом информация не повреждается.
Низкоуровневое форматирование основано на физическом воздействии на поверхность диска, в результате которого образуются расположенные вдоль дорожек секторы. Каждый сектор имеет уникальный адрес, состоящий из номеров сектора, дорожки, стороны пластины. При считывании оперативная память обращается сразу по этому адресу, за счет чего достигается быстродействие.
Проведение физического форматирования диска влечет за собой потерю всех записанных на него данных. При этом в большинстве случаев восстановление невозможно.
Восстановление данных с жесткого диска, hdd, винчестера
Жесткий диск безусловно самый распостраненный носитель информации, не один компьютер и ноутбук не обходиться без него. У этого устройства множенство названий и аббревиаттур давайте рассмотрим самые распостранненые:
Винчестер — откуда произошло такое название Вы можете узнать ознакомившись с разделом этой страницы «История жесткого диска» и уже в свою очередь от этого названия произошли такие как винт, веник и др.
HDD — аббривиаттура на английском языке, которая раскрывается как hard disk drive, что на русском как раз и обозначает жесткий диск.
НЖМД — на русском языке жесткий диск имеет аббривеатуру НЖМД, что обозначает накопитель на гибких магнитных дисках.
История жесткого диска.
Первый жесткий диск.
Официальной датой создания первого жесткого диска принято счиитать 13 сентября 1956 года. В этот день IBM (один из лидеров по производсту hdd) объявила о создании носителя информации основанного на магнитных пластинах. Диски имели прочную основу, на тот момент они покрывались оксидом железа, что давало право называть это устройство магнитным. На первом жестком диске было 50 пластин, которые имели диаметр 60 см. Этому носителю информации даже дали имя «RAMAC». представлял он из себя огромный шкаф, а вот объем информации которую можно было записать на него составил 5 Мбайт.
Почему винчестер ?
Выше мы уже говорили, что жесткий диск так же назвают винчестером. Давайте разберемся откуда пришло название винчестер. Все дело в том, что в 1973 году, опять же компания IBM, седлала прорыв в производсте жестких hdd. Она создала модель, которая имела название IBM 3340. Этот винчестер стал намного меньще своего предшествинника, на нем увеличилась плотность записи данных, а еще увеличилась скорость доступа к этим самым данным. На внешний вид IBM 3340 представлял из себя два шкафчика с емкостью 30 Мбайт каждый, ткие же фиры были в маркировке винтовки «Winchester 30-30». Какой то шутник увидел аналогию в этих двух предметах и с тех пор к жесткому диску прикрепилось название винчестер.
Устройство жесткого диска.
Если рассматривать жесткий диск в целом, то он состоит из двух основных частей: это плата электроники, на которой располагается так сказать «мозг» hdd. На нем расположены процессор, так же присутсивует управляющая программа, оперативное запоминающее устройство, усилитель записи и чтения. К механической части относяться такие части как блок магнитных головок имеющих аббривиатуру БМГ, двигатель который придает вращение пластинам, ну и конечно же сами пластины. Давайте рассмотрим каждую часть более детально.
Гермоблок.
Гермоблок он же корпус жесткого диска — предназначен для крепления всех деталей hdd, а так же выполняет функцию защиты от попадания частиц пыли на поверхность пластин. Стоит отметить что вскрытие гермоблока, можно осуществлять только в специально подготовленном для этого помещении, во избежании как раз таки попадания пыли и грязи внутрь корпуса.
Интегральная схема.
Интегральная схема или плата электроники синхронизирует работу жесткого диска с компьютером и управляет всеми процессами, в частности она поддерживает постоянной скорость вращения шпинделя и соотвественно плаcтин, которая осуществляется двигателем.
Электромотор.
Электромотор или двигатель вращает пластины около 7200 оборотов в секунду (взято среднее значение, есть винчестеры на которых скорость выше и доходит до 15000 оборотов в секунду, а есть и с меньшей скоростью около 5400, от скорости вращения пластин зависит скорость доступа к нужной инфоормации на жестком диске).
Коромысло.
Коромысло предназначено для записи и чтения информации с пластин жесткого диска. Конец коромысла разделен и на нем находится блок магнитных головок, это сделано для того, что бы можно было записывать и считывать информацию с нескольких пластин.
Блок магнитных головок.
В состав коромысла входит блок магнитных головок, о которых мы говорили выше и который довольно часто выходит из строя, но это «часто» параметр очень условный. Магнитные головки распологаются сверху и снизу пластин и служать для непосредственного считывания информации с платин расположенных на жестком диске.
Пластины.
На пластинах непосредственно храниться информация, они изготавливаются из таких материалов как, алюминий, стекло и керамика. Самое большое распостранение получил алюминий, а вот из двух остальных материалов изготавливают, так называемые «элитные диски». Первые выпускаемы пластины покрывались окисью железа, но этот ферромагнетик имел большой недостаток. Диски покрытые таким веществом имели небольшую износостойкость. На данный момент большинство производителей жестких дисков покрывают пластины кобальтом хрома, у которго запас прочности на порядок выше, чем у окиси железа. Пластисны крепяться на шпиндель на одинаковом друг от друга расстоянии, такая конструкция имеет название «пакет». Под дисками распологается ранее описанный двигатель или электромотор.
Каждая сторона пластины разбита на дорожки, они в свою очередь разделены на сектора или по другому блоки, все дорожки одного диаметра представляют из себя цилиндр.
Все совеременные винчестеры имеют так называемый «инженерный цилиндр», на нем хранятся служебная информация, такая как модель hdd, серийный номер и др. Эта информация предназначена для считывания компьютером.
Низкоуровневое форматирование жесткого диска.
Раньше после того как Вы впервые подключили жесткий диск к компьютеру необходимо было произвести низкоуровневое форматирование. Для осуществлениия этой операции в BIOS присутствовал специальный выделенный пункт. На сегодняшний момент эту процедуру выполняют заводы изготовители. При низкоуровневом форматировании происходит запись сервоинформации, которая содержит в себе данные о специальных метках, которые предназначены для стабилизации скорости вращения шпинделя, поиска головками необходимых секторов, а так же информация, которая помогает следит за расположением головок над поверхностью пластины.
Принцип работы жесткого диска.
Выше мы рассмотрели устройство жесткого диска и частично затронули вопрос взаимодействия различных частей hdd. Давайте теперь рассмотрим как работает этот носитель информации.
В процессе работы жесткого диска не происходит прямого контакта БМГ и поверхности пластины, более того если такое соприкосновение произойдет это разрушит hard disk drive. Мотор раскручивает шпиндель до 15 000 оборотов в секунду, из за этого образуется так называемая воздушная подушка, которая и не дает соприкосаться БМГ с платинами. Если же скорость вращения по различным причинам (перебои в электропитании или же штатное выключение компьютера) становится ниже критической, то коромыло перемещается в парковочную зону жесткого диска. Эта зона распологается у шпинделя, где не происходит процесса записи и чтения информации, поэтому головки спокойно ложатся на поверхность пластин в такой парковочной зоне.
Запуск жесткого диска.
После того как на hdd подается питание, происходит тестирование электроники, по мере того как двигателем раскручивается шпиндель, а вместе с ним соотвественно и пластины, появляется эффект воздушной подушки, которая поднимает магнитные головки с зоны парковки. После того как достигается необходимая скорость вращения, БМГ покидают парковочную зону и с помощью контроллера ищут сервометки, созданные в процессе низкоуровнего форматирования. Если процессор получает положительный результат, то жесткий диск переводится в рабочий режим.
Технология чтения/записи на жестком диске.
Чтение и запись на жесткий диск, а вернее на одну из пластин hdd производиться головками записи входящими в состав БМГ. Принцип этого процесса идентичен процессу записи и считывания информации с кассет. Данные преобразуются в перменный электрический ток, далее этот ток поступает на головку записи/чтения, преобразовавшись в магнитное поле он намагничивает участок пластины жесткого диска. Как мы уже знаем плаcтины покрыты ферромагнитным слоем, который можно намагнитить одним из способов, каждый из этих способов обозначает либо 0 либо 1. намагниченный участок платины hdd называют доменом. Это домен представляет собой маленькую область пластины, которая имеет заряд с определенной ориентацией северного или южного полюсов. После того как магнитная головка, воздействовала на домен, он принимает одно из значений и на пластине образуются зоны остаточной намагниченности, они как раз и обозначают сохраненную на диске информацию.
Видео устройство и принцип работы жесткого диска от Discovery.
Видео об устройстве и принципе работы жесткого диска имеет название «Жесткий диск ! Все что вы еще не видели своими глазами.» Это видео снято популярным каналом Discovery, который славиться своими интересными и очень познавательными фильмами. Длина этого видео составлят всего 4 минуты 44 секунды, за которые Вы погрузитесь в мир hard disk drive, в котором рассказывается и показывается общее устройство жесткого диска, а так же принцип его работы. Фильм переведен на русккий язык, приятного просмотра.
Словарь терминов: Жесткие диски
Тип жесткого диска.
Жесткие диски можно условно разбить на несколько типов: внешние жесткие диски, диски для настольных ПК, жесткие диски для ноутбуков, а также диски для серверов. Каждый из вышеперечисленных типов характеризуется конструктивными особенностями, которые делают использование данного типа диска в определенных случаях наиболее целесообразным.
Жесткие диски для настольных ПК. Обычно они имеют размер 3.5", интерфейс подключения SATA или IDE, характеризуются скоростью вращения равной 5400 или 7200 об/мин.
Жесткие диски, предназначенные для серверов, характеризуются большей скоростью вращения, которая достигает 15000 об/м. В таких дисках для подключения применяются разнообразные модификации SATA, SAS — последовательных интерфейсов или SCSI — параллельного интерфейса. Эти диски используются в системах, нуждающихся в высокой надежности хранения данных, поэтому они характеризуются очень высоким качеством изготовления и продолжительным временем безотказной работы, оно превышает миллион часов наработки на отказ.
Еще недавно жесткие диски, использующиеся в серверах, имели ширину равную 3.5". Но сейчас выпускаются уже и модели шириной в 2.5 дюйма. Применение подобных накопителей даст возможность уменьшить габариты серверов, а также понизить их потребление энергии.
Внешние портативные жесткие диски дают возможность легко решить проблему перемещения объемных файлов, к примеру, фильмов, музыкальных архивов, сверстанных книг и т.д. Подобный мобильный носитель состоит из жесткого диска в 2.5" или 3.5", а также из контроллера, необходимого для подключения к нужному порту. Контролеры для таких дисков могут подключаться к ПК с помощью интерфейсов FireWire или USB 2.0. Внешние портативные жесткие диски имеют небольшие размеры и малый вес, что дает возможность без проблем носить их всегда с собой.
Внешние жесткие диски стационарные могут быть составлено как из одного накопителя, так и из нескольких, могут иметь большой вес и немалые габариты. Они дают возможность хранить значительный объем данных, однако для их работы может понадобиться отдельное питание.
Жесткие диски, применяющиеся для ноутбуков, могут иметь размер 1.8" или 2.5". Используется интерфейс подключения IDE, скорость вращения может быть равна 4200 или 5400 об/мин. Стоит сказать, что из-за некоторых особенностей конструкции уровень шума жестких дисков, а также тепловыделение значительно ниже, чем у винчестеров, которые применяются для серверов и настольных ПК. Приобретая внешние винчестеры, а также жесткие диски для портативных компьютеров, следует обращать особое внимание на их ударостойкость.
Линейка
Название модельного ряда жестких дисков, объединенных какими-то одинаковыми параметрами. В названии линейки не могут указываться технические параметры, для указания таких параметров жестких дисков существуют другие поля карточки.
Форм-фактор
Форм-фактор жесткого диска.
Все производящиеся сегодня жесткие диски характеризуются стандартными габаритами и посадочными отверстиями, служащими для крепления. В ноутбуках, персональных компьютерах или серверах имеются специальные установочные места некоторого форм-фактора для установки жесткого диска.
Данный параметр для внешних накопителей показывает стандарт используемого в накопителе жесткого диска.
Форм-факторы жестких дисков: 1", 1.3", 1.8" 2.5" 3.5". Цифры называют ширину жесткого диска в дюймах. Чем значение меньше, тем габариты и, соответственно, вес тоже меньше.
Объем жесткого диска
от 9.1 до 18000 Гб
Емкостью называют физический объем жесткого диска, т.е. емкость – это столько байт информации, сколько сможет разместиться на данном жестком диске. Это наиболее важный параметр жесткого диска. Емкость зависит от ряда факторов, во-первых, от поверхностной плотности записи, во-вторых, размером дисковых пластин, в-третьих, количеством этих пластин. Емкость определена изначально, она состоит из объема, доступного пользовательским данным, а также из объема, занятого служебными данными.
Объем буфера
Выпускающиеся сегодня жесткие диски обязательно снабжены оперативной памятью, называемой буфером или кэшем. Служит эта память для хранения тех данных, к которым чаще всего происходит обращение. Такая информация при этом считываются уже из буфера, а не с дисковой пластины, что позволяет добиться большей скорости передачи информации.
Скорость вращения
от 4200 до 15000 rpm
Данный параметр показывает, какова у шпинделя жесткого диска скорость вращения. Чем данный параметр больше, тем с большей скоростью происходит обращение к данным, записанным на винчестере. В настольных ПК обычно применяются жесткие диски IDE, у характеризующиеся скоростью вращения или 5400 об/мин, или 7200 об/мин. В ноутбуков применяются IDE-диски, которые характеризуются скоростью вращения 4200 либо 5400 об/мин для бюджетных моделей ноутбуков и для «навороченных» моделей — 7200 об/мин. Минимальная скорость вращения пластин для SCSI-дисков составляет 7200 об/мин, но зачастую скорость вращения пластин подобного рода дисков равняется 10000 или 15000 об/мин. Нужно знать, что при увеличении скорости вращения, у жесткого диска повышается температура корпуса. Диски со скоростью вращения 7200 об/мин и выше нуждаются либо в использовании корпуса с особой конструкцией, которая способна обеспечивать нужный отвод тепла, либо в большем охлаждении диска путем установки внешнего вентилятора.
Внешняя скорость передачи данных
от 40 до 10000 Мб/с
Передача информации из буфера жесткого диска в ОП персонального компьютера производится с этой скоростью. Скорость определяется пропускной способностью интерфейса жесткого диска и типом.
Скорость записи
от 80 до 1200 Мб/с
Для твердотельных (SSD) накопителей производители часто указывают скорость записи и скорость чтения данных, в то время как для "классических" жестких дисков обычно указывается только внутренняя скорость обмена данными.
У разных моделей SSD-дисков скорость записи может отличаться в десятки раз. Высокая скорость записи позволит уменьшить время копирования файлов и увеличит общую производительность системы.
Скорость чтения
от 80 до 910 Мб/с
Для твердотельных (SSD) накопителей производители часто указывают скорость записи и скорость чтения данных, в то время как для "классических" жестких дисков обычно указывается только внутренняя скорость обмена данными.
У разных моделей SSD-дисков скорость чтения может отличаться в десятки раз.
Высокая скорость чтения позволит уменьшить время загрузки операционной системы или время копирования файла, увеличит общую скорость работы компьютера.
Количество дисков
Число дисковых пластин. Пластин, с которых производятся операции чтения/записи информации, у жесткого диска может быть одна или несколько. Стоит помнить, что увеличение числа дисковых пластин и увеличение головок чтения/записи значительно повышает стоимость диска и уменьшает его надежность. Вот почему фирмы-изготовители выпускающихся сегодня жестких дисков стремятся снизить количество пластин до 1-4 шт.
Интерфейсы
SATA (Serial ATA) — последовательный интерфейс передачи данных, который практически везде заменил старый интерфейс IDE. Используется для подключения внутренних жестких дисков в ноутбуках и настольных системах. На данный момент существует три версии интерфейса SATA: SATA 1.5Gb/s, SATA 3Gb/s, SATA 6Gb/s. Они различаются скоростью передачи данных и полностью совместимы между собой.
Возможность подключения жесткого диска по интерфейсу SAS.
SAS (Serial Attached SCSI) — последовательный интерфейс передачи данных. Является дальнейшим развитием SCSI-интерфейса, превосходя его по скорости передачи данных.
Подключение жесткого диска по интерфейсу SCSI.
SCSI — параллельный интерфейс передачи данных. Преимущества: защищен от помех, а также отказоустойчив. Давно стал стандартом для рабочих станций и серверов. SCSI-диски всегда были более производительными, надежными и дорогими, чем диски с другими интерфейсами.
Тип SCSI
SCSI – это высокоскоростной интерфейс. Он используется для того, чтобы подключать к компьютеру внутренние и внешние устройства. Small Computer System Interface был несколько раз доработан, сейчас можно встретить несколько разновидностей, главными являются Ultra160 и Ultra320.
Тип Ultra160 SCSI характеризуется невысокой максимальной пропускной способностью – всего 160 Мб/сек. В данном стандарте применяется LVD — низкоуровневый дифференциальный интерфейс. Возможно применение кабелей длиной до 12 м.
Тип Ultra320 SCSI характеризуется более высокой максимальной пропускной способностью, она равна 320 Мб/сек. Тип совместим с предыдущими версиями протокола Small Computer System Interface. Разъёмы 68-pin и 80-pin SCA служат для обеспечения пропускной способности в 320 Мб/сек. Разъемы 80-pin дают возможность производить "горячую замену".
Fibre Channel
Fibre Channel — высокоскоростной последовательный интерфейс передачи данных, который используется для подключения жесткого диска. В современных системах используется модификация FC-AL (Fibre Channel Arbitrated Loop) по названию основной топологии сети передачи данных — петля с арбитражным доступом. Основным преимуществом этого интерфейса является высокая скорость передачи данных (1-4 Гбит/c) и большое расстояние соединения (до 10 км).
Жесткие диски с интерфейсом FC-AL используются в высокопроизводительных устройствах хранения данных. Поскольку интерфейс FC-AL используется для передачи данных как между устройством хранения и сервером или рабочей станцией, так и внутри устройства хранения, то нет необходимости преобразовывать данные из одного стандарта в другой. Это также является преимуществом Fibre Channel перед другими интерфейсами передачи данных.
Временные характеристики
Время наработки на отказ
от 20000 до 14000000 ч
Продолжительность безотказной работы жесткого диска. Фирмы-производители указывают зачастую среднюю статистическую наработку жесткого диска на отказ, эта величина измеряется в сотнях тысяч часов работы. Естественно, что чем данный показатель выше, тем лучше. Для того чтобы повысить надежность производители принимают различные меры, всевозможными средствами самодиагностики они оснащают контроллер диска, устанавливают датчики обнаружения ошибок и так далее. Технологии, подобные S.M.A.R.T. (технология самотестирования жесткого диска, анализа состояния и отчетности), дают возможность составлять прогнозы возможного отказа диска.
Дополнительные характеристики
Шифрование данных
В накопителе имеется специальный модуль, служащий для шифрования данных.
Шифрование информации осуществляется перед тем, как производится ее запись на магнитные пластины. Аутентификация происходит до начала загрузки компьютера. Пользователь не получит доступа к информации на диске в случае, если не знает пароля. Поэтому если ноутбук с подобным накопителем (или даже если только сам накопитель) попадет в недобрые руки, то злоумышленник все равно не сможет воспользоваться информацией, так как не получит к ней доступа.
Шифрования производится абсолютно незаметно для пользователя и независимо от центрального процессора.
Стоят жесткие диски с подобным модулем дороже, чем обычные. Эти накопители служат для хранения особо важной информации.
Потребляемая мощность
от 1.1 до 189 Вт
Чем меньше потребляемая мощность, тем меньше энергии расходуется при работе жесткого диска. Особенно важна экономия энергии для портативных устройств, работающих от аккумулятора. Кроме того, чем меньше потребляемая мощность, тем ниже тепловыделение и уровень шума
Потребляемая мощность в спящем режиме
от 0.1 до 11.68 Вт
Чем меньше мощность, потребляемая накопителем данных в спящем режиме, тем меньше энергии расходуется при работе жесткого диска. Особенно важна экономия энергии для портативных устройств, работающих от аккумулятора. Кроме того, чем меньше потребляемая мощность, тем ниже тепловыделение и уровень шума
Уровень шума
Работа
Уровень шума, который создается жестким диском во время выполнения операций чтения информации или записи информации. Источником шума в рабочем состоянии являются не только вращающиеся диски винчестера, но и головки чтения/записи при движении.
Простой
Уровень шума, который создается жестким диском во время покоя, когда не совершается ни одной операции. Во время простоя источником шума становятся вращающиеся диски винчестера. Разработаны модели жестких дисков, снабженные системой гидродинамических подшипников, такое строение дает возможность ощутимо уменьшить шум и вибрацию устройства.
Ударостойкость
При работе
Уровень чувствительности жесткого диска во включенном состоянии к ударам. Величина измеряется в единицах допустимой перегрузки, которую способен выдержать винчестер. Чем данный показатель больше, тем надежнее диск защищен от неблагоприятных внешних воздействий.
Высокая ударостойкость при работе особенно важна, если вы планируете диск применять в качестве переносного, ведь случайно задеть включенный мобильный диск очень просто.
А вот для стационарного применения диска данный параметр не сильно значим, однако все равно представляет интерес, так как жесткий диск в рабочем состоянии почти не защищен от негативного внешнего воздействия.
При хранении
от 65 до 1500 G
Уровень чувствительности жесткого диска в выключенном состоянии к ударам. Величина измеряется в единицах допустимой перегрузки. Во время выключения привода головки чтения/записи отводятся в сторону на безопасное расстояние, благодаря этому их повреждение, а также повреждение пластин дисков имеет меньшую вероятность. Чем показатель ударостойкости при хранении выше, тем диск лучше защищен от всевозможных внешних воздействий. Если диск планируется применять в качестве переносного, то данный параметр очень важен.