Pmonline.ru

Пром Онлайн
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Решения на базе жестких дисков форм-фактора 2. 5; и 3. 5

Решения на базе жестких дисков форм-фактора 2.5" и 3.5"

Жёсткие диски в двух форм-факторах 2.5" и 3.5" – практические отличия и сферы применения.

На рынке жёстких дисков регулярно происходят изменения, зачастую остающиеся незамеченными потребителями. Тем не менее, некоторые изменения не заметить попросту невозможно.

Сегодня производители жёстких дисков находятся в активной фазе перевода производства жёстких дисков с форм-фактора 3.5" на 2.5".

Подобные эволюционные изменения происходили и раньше — при переходе с форм-фактора 5.25" (если помните) и даже с форм-фактора 8" (если знаете).

Часто, вместо указания конкретного форм-фактора жёсткого диска в дюймах (а двойной кавычкой обозначается именно дюйм), поставщики компьютерного оборудования используют аббревиатуры SFF и LFF, сокращения фраз Small Form Factor и Large Form Factor, соответственно. Нетрудно догадаться, что любые (и SATA, и SAS) жесткие диски меньшего форм-фактора 2.5" получили обозначение SFF HDD, а большего 3.5"LFF HDD.

Не секрет, что в современных высокопроизводительных жёстких дисках форм-факторов 3.5" и 2.5" производители используют пластины одинакового размера — от 2.5" HDD. Потому, зачастую, и ёмкость, и параметры производительности 2.5" и 3.5" моделей жёстких дисков одного производителя выглядят одинаково. Более того, некоторые производители объявили о прекращении производства высокопроизводительных жёстких дисков размера 3.5", оставив топовые модели HDD только в форм-факторе 2.5". Доступность высокопроизводительных жёстких дисков форм-фактора 3.5" неуклонно снижается.

Исходя из реалий современного рынка, производители считают экономически нецелесообразным использование более 2-х пластин внутри одного жёсткого диска. Для справки, в жёсткий диск форм-фактора 2.5" (высотой 15мм) возможно установить до 3-х пластин, а в 3.5" HDD — до 5 пластин.

2.5" жесткий диск внутри

Что же делать тем потребителям, которые не могут или не хотят (по всевозможным причинам) использовать современные жёсткие диски форм-фактора 2.5"?

Производители предлагают промежуточное решение – использование 2.5" жёстких дисков в форм-факторе 3.5".

В качестве 3.5" жёсткого диска предлагается обычный 2.5" жёсткий диск, установленный на заводе производителем в специальный металлический монтажный корпус — каретку. Следует заметить, что извлечение этого жёсткого диска из монтажного корпуса у некоторых производителей несовместимо с гарантией. Из несомненных плюсов такой конструкции следует отметить то, что инженерами компаний-производителей точно просчитываются габариты и жёсткость конструкции, гарантируется стандартное для 3.5" жёстких дисков расположение разъёмов и монтажных отверстий, обеспечивается оптимальность охлаждения установленного внутрь жёсткого диска.

Если переход на меньший форм-фактор неизбежен, что даст потребителям переход на 2.5" форм-фактор жёстких дисков?
Каковы отличия, плюсы и минусы дисковых подсистем на базе жёстких дисков различных форм-факторов и сферы их применения? Двумя словами — какая разница?

Очевидно, что чем меньше габариты жёсткого диска, тем больше таких жёстких дисков должно поместиться внутрь сервера.

На сегодняшний день, в серверы для монтажа в стойку традиционно устанавливается следующее количество жёстких дисков:

В общем случае (как видно из таблицы), в серверы возможно установить в 2 раза больше жёстких дисков форм-фактора 2.5", по сравнению с серверами такого же размера, но с 3.5" жёсткими дисками.

Как уже было сказано ранее, в сегменте жёстких дисков корпоративного класса, максимальная ёмкость дисков двух различных форм-факторов — одинаковая, исходя из этого, применение дисковой подсистемы с отсеками 2.5" позволяет удвоить максимальную общую ёмкость хранилища. И даже при использовании жёстких дисков низкого ценового диапазона, в котором, на сегодня, максимальный объём жёстких дисков форм-фактора 3.5" примерно в 2 раза больше, чем у 2.5" дисков, максимальная ёмкость дисковых подсистем с отсеками разного форм-фактора будет примерно одинаковой.

В качестве дополнительного бонуса применения 2.5" жёстких дисков, очевидно, что за счёт меньших габаритов (2.5" диск меньше 3.5" диска в глубину) дисковая подсистема в сервере занимает меньший объём, что позволяет производителям немного уменьшить габариты серверов. Также следует заметить, что большинство современных SSD (твердотельных накопителей) выпускается в форм-факторе 2.5" и использование в сервере 2.5" отсеков гарантирует совместимость при установке SSD-накопителей, и, что особенно актуально, в будущем — при возможной модернизации сервера.

Жёсткие диски меньших размеров активно используются в системах с небольшими габаритами, в серверах высокой плотности монтажа, модульных и блейд-серверах. Например, в одном корпусе STSS Flagman HXQ226.2 высотой 2U находятся сразу 4 двухпроцессорных сервера и 24 жёстких диска форм-фактора 2.5", то есть к каждому серверу подключены сразу 6 жёстких дисков 2.5" форм-фактора. Для получения такого же количества 3.5" дисков корпус сервера должен быть в 2 раза выше — высотой не 2U, а 4U.

Читайте так же:
Мониторы для компьютера розетка

Такой параметр, как максимальный объём дискового пространства конечно важен, но не всегда. В дисковых подсистемах серверов корпоративного класса производительность дисковой подсистемы (количество операций ввода-вывода в секунду, IOPS) гораздо важнее общей ёмкости дискового хранилища.

Количество RAID-групп (LUN) дисковой подсистемы и их производительность (IOPS) возрастают при увеличении числа подключенных жёстких дисков, поэтому очевидно, что большее количество 2.5" дисков даст серьёзное преимущество по сравнению с небольшим массивом из 3.5" HDD.

Сервер высокой плотности монтажа STSS Flagman HXQ226.2

Для сравнения — два 2.5" жёстких диска с 10.000rpm (оборотов в минуту) корпоративного класса на хорошем RAID-контроллере превзойдут по производительности один 3.5" диск с 15.000rpm. При этом, цена двух 2.5" 10.000rpm дисков объёмом по 300GB и одного 3.5" 15.000rpm диска объёмом 600GB будет примерно одинакова.

Такой параметр как линейная скорость чтения/записи на внешних треках, теоретически, должна быть выше у жёстких дисков 3.5" чем у 2.5" (при одинаковой скорости вращения шпинделя и при одинаковой плотности записи) просто за счёт физически большего размера пластин, но в реальности отличия незначительны, так как в высокопроизводительных жёстких дисках разных форм-факторов зачастую находятся пластины одинакового размера.

В общем случае, чем больше в сервере жёстких дисков, тем больше электропотребление (более мощными должны быть блоки питания), и больше тепловыделение (более мощной должна быть система вентиляции сервера и затраты на охлаждение). Однако, по сравнению с 3.5" моделями жёстких дисков, современные 2.5" жесткие диски имеют в 2 раза меньшее энергопотребление (во всех режимах) и, как следствие, меньшее тепловыделение и затраты на охлаждение. Таким образом, сервер с 24-мя 2.5" жёсткими дисками потребляет электричества и греет окружающее пространство меньше, чем сервер с 12-ю 3.5" жёсткими дисками.

Надёжности жёстких дисков всегда уделяется большое внимание. За счёт уменьшения габаритов (и дополнительных инженерных решений) 2.5" жёсткие диски обладают повышенной устойчивостью к вибрации и механическим воздействиям. Это подтверждается самими производителями, наработка на отказ (MTBF) у последних моделей 2.5" жёстких дисков составляет 2 млн. часов, по сравнению с лучшими моделями 3.5" жестких дисков, у которых MTBF декларируется на уровне 1,3-1,6 млн. часов.

И последнее, не смотря на то, что в серверах это не актуально, но 2.5" диски производят при работе немного меньший шум по сравнению с 3.5" моделями.

В итоге, можно кратко сформулировать плюсы и минусы, а также сферы применения жестких дисков различных форм-факторов.

9.5 Ограничения емкости дисков

С ограничениями емкости приходится сталкиваться всякий раз, когда системная BIOS (или операционная система) не способна распознать (или адресовать) часть секторов жесткого диска. Это явление связано не с конструкцией или структурой того или иного накопителя, а с несовершенством системной BIOS или операционной системы. Например, BIOS может оказаться не в состоянии преобразовывать адреса секторов, если количество цилиндров превышает определенную величину — в итоге часть дискового пространства для нее будет недоступна. Что касается операционной системы, то для нее существуют ограничения в количестве ячеек (кластеров), которые могут быть адресованы в рамках принятой файловой структуры ( FAT ) . Производители жестких дисков впервые столкнулись с ограничениями на уровне BIOS в 1994 г. , когда был и разработаны АТА-2/Е ID Е накопители емкостью более 504Мбайт. Ограничения, связанные с операционной системы, проявили себя после того, как начался выпуск жестких дисков емкостью более 2Гбайт. Конкретные ограничения, с которыми вы можете столкнуться, зависят от версии BIOS и используемой операционной системы. В настоящее время чаще всего приходится иметь дело с ограничениями в BIOS на уровне 2, 4 и 7,88Гбайт (2 и 4 Гбайт — приблизительные значения). Что касается операционных систем, то в DOS и Windows 95 (не OSR 2) размер раздела не должен превышать 2Гбайт, в WindowsNT — 4Гбайт, a Windows 95 OSR 2 и Windows 98 могут работать с накопителями гораздо больших размеров.

9.5.1. Ограничения количества цилиндров в BIOS

· BIOS игрист ключевую роль при обращениях к жесткому диску с использованием программного прерывания INT 13. На сегодняшний день существуют три главных ограничения, связанные с BIOS .

Читайте так же:
Ваша видеокарта не соответствует минимальным требованиям

· В версиях BIOS , разработанных до июля 1994г. , емкость накопителя обычно ограничена величиной 504Мбайт, а количество цилиндров не может превышать 1024. До этого времени возможности режима логической адресации блоков ( LBA ) практически не использовались.

· В версиях BIOS , разработанных после июля 1994г., емкость накопителя обычно ограничена величиной около 2Гбайт, а количество цилиндров не может превышать 4093÷4096. Режим LBA в этих версиях используется вполне корректно, а упомянутые ограничения на количество адресуемых цилиндров разработчики BIOS наложили искусственно.

· В версиях BIOS , разработанных после 1996г., отсутствуют ограничения емкости на уровне 504Мбайт и 2Гбайт, однако вы можете столкнуться с порогами на уровне 4 и 7,88Гбайт. Как и в предыдущих версиях, эти пределы возникают из-за ограничений на количество цилиндров (в районе 8190), введенных разработчиками BIOS .

· Если говорить о конкретных BIOS ведущих фирм, то необходимо отметить следующее.

· В BIOS фирмы Phoenix Technologies ( www . ptltd . com ) версии 4, начиная с 6-й редакции, предусмотрена поддержка накопителей емкостью более 7,88 Гбайт. В редакции 5.12 не поддерживаются расширенные функции, вызываемые через INT 13. Все BIOS фирмы Phoenix относятся к версии 4, т.е. редакция 5.12 является более ранней, чем 6 я . Для модернизации своих BIOS фирма Phoenix рекомендует использовать продукцию компании MicroFirmware ( max . firmware . com ) .

Как выбрать жесткий диск?

Ниже мы рассмотрим основные критерии выбора современных жестких дисков, расскажем на что следует обратить внимание при покупке винчестера и приведем основные отличительные характеристики HDD дисков.

Как выбрать жесткий диск

Содержание:

HDD жесткие диски представляют собой магнитные запоминающие устройства, которые характеризуются большим объёмом внутренней памяти, достаточной скоростью записи и считывания, а также вполне доступной ценой. История винчестеров начинается в середине пятидесятых годов прошлого века, когда были созданы первые прототипы магнитных жестких дисков, обладающих мизерными, по нынешним меркам, объёмами и громадными размерами.

Интересный факт: в начале семидесятых годов XX века, компания IBM начала разработку нового типа магнитных жестких дисков, в одном корпусе которого были объединены считывающие, записывающие головки, а также само тело диска. Проект компании получил кодовое название «30-30», означающие два модуля по тридцать мегабайт. Кодовое название «30-30» было созвучным с маркировкой популярных охотничьих боеприпасов «.30-30 Winchester». С тех пор «винчестер» стал неофициальным названием большинства HDD накопителей.

Как правило, классические HDD устанавливаются в корпус компьютера путем подключения к запоминающему устройству кабеля питания и кабеля интерфейса SATA. Также существуют внешние жесткие диски, выполненные в виде отдельного устройства, подключаемого через USB.

В добавок к большим объёмам и доступности, магнитные накопители считаются достаточно надежными устройствами для хранения данных. Срок работы таких накопителей может достигать свыше 5-10 лет, чего более чем достаточно для домашнего использования.

Эти преимущества, сделали жесткие диски одними из самых популярных и часто встречаемых накопителей в персональных компьютерах во всем мире. Несмотря на длинную историю и популярность жестких дисков, многие пользователи задаются вопросом: «Как правильно выбрать накопитель и на что обратить внимание при покупке нового жесткого диска». С этим мы поможем разобраться ниже.

Выбор основного накопителя

Для начала следует сразу разделить понятие «жесткий диск», которое в рамках данной статьи будет применяться только к HDD дискам. Прямым конкурентом жестких дисков являются твердотельные SSD накопители, обладающие повышенной скоростью записи и считывания, но более скромными объёмами и повышенной стоимостью.

В данный момент большинство современных персональных компьютеров оборудованы двумя типами запоминающих устройств. SSD-диски, из-за своей высокой производительности, используются для установки операционной системы, программ, игр и т.д. Это позволяет получить максимальную эффективность, быстродействие и скорость работы.

В то же время, HDD-носители, из-за своих больших объёмов, надежности и доступной стоимости, применяются для хранения личных данных, вроде фотографий, видеозаписей, документов и других файлов, которые большинство времени статически хранятся на носителе.

Стоит понимать, что вышесказанное – не аксиома, и любой пользователь может применять HDD накопитель для установки операционной системы и программ (как это делалось до всеобщего распространения быстрых твердотельных накопителей), но общая эффективность системы в таком случае будет ниже, чем при использовании SSD. Именно поэтому рекомендуем сразу определиться с тем, для каких задач будет использоваться жесткий диск, поскольку его дальнейший выбор во много будет зависеть именно от этого.

Читайте так же:
Материнская плата asrock z77 pro4

Каким объемом должен обладать жесткий диск?

Сейчас на прилавках магазинов редко можно встретить жесткие диски объемами менее 500 гигабайт. Это обусловлено тем, что с развитием цифровых технологий размеры файлов и другой информации стали значительно увеличиваться.

К примеру, еще каких-то 10 лет назад, стандартный размер игр не превышал 10 гигабайт (популярный шутер 2009 года Call of Duty: Modern Warfare 2 занимает 6.52 гигабайт памяти). В данный момент размер видеоигр может достигать ста и более гигабайт (шутер Battlefield 1 со всеми установленными дополнениями занимает примерно 80 гигабайт дискового пространства).

Фотографии с большим разрешением, объёмные видеозаписи и другая информация, может занимать значительный объем, поэтому при покупке нового накопителя, лучше обратить внимание на диски объемом от одного терабайта, который уже стал неким стандартом для магнитных накопителей.

Важно! Жесткие диски объёмом более двух терабайт требуют наличия прошивки UEFI вместо стандартного BIOS, поскольку последний не поддерживает диски объёмом более двух терабайт. Накопитель будет работать в штатном режиме, но на него можно будет записать не более двух терабайт информации, независимо от его реального объема.

Чтобы узнать Вашу прошивку, следует внимательно ознакомиться с характеристиками материнской платы или самостоятельно зайти в BIOS (нередко производители называют UEFI БИОСом, чтобы не путать лишний раз пользователей), где будет присутствовать возможность настройки UEFI. Также очевидной характеристикой UEFI, отличающей его от BIOS, является поддержка курсора мыши и более удобный графический интерфейс.

Производительность, скорость чтения и записи

Определившись с необходимым объемом жесткого диска, следует разобраться со скоростью записи и считывания информации.

Данная характеристика напрямую влияет на комфорт от использования и быстродействие системы. Диски с более высокой скоростью позволяют получить практически мгновенный доступ к информации, а работа программ, игр и других утилит на быстром диске будет происходить без «подтормаживаний» и других негативных моментов.

В данный момент самыми быстрыми являются SSD диски, в то время как HDD используются для статичного хранения информации, поэтому если у Вас уже установлен SDD, можно не тратить лишние деньги на более скоростной HDD. В случае, если у Вас будет установлен один HDD, следует обратить внимание на модели с повышенной скоростью записи и считывания.

Стоит отметить, что из-за особенности конструкции HDD накопителей, диски с повышенным объемом будут иметь более высокую скорость работы, а стандартный жесткий диск объёмом 1 или 2 терабайт и скоростью вращения шпинделя 7200 оборотов за минуту (характеристика, отвечающая за скорость записи и считывания информации с носителя), будет вполне достаточным для комфортного использования в домашнем компьютере.

Другие характеристики, на которые следует обратить внимание

Из других характеристик, которые стоит учитывать при выборе жесткого диска являются:

  • Кэш или объем буфера – встроенная память накопителя, отвечающая за быстродействие носителя. В доступном сегменте можно встретить носители с кэшем от 16 до 256 мегабайт. Если диск будет использоваться в виде хранилища, можно выбирать модель с небольшим объемом кэша. Если носитель устанавливается как основной, следует отдать предпочтение моделям с повышенным буфером памяти.
  • Производитель – в интернете постоянно ведутся споры об производителях жестких дисков. Некоторым импонирует один производитель, другие предпочитают выбирать иную компанию. Если взглянуть на эту ситуацию не предвзято, можно понять, что большинство популярных производителей находятся примерно на одном уровне по надежности, качеству исполнения и производительности. Это не означает, что следует просто покупать самый дешевый накопитель. Это лишь наталкивает на факт, что усредненный вариант будет служить и безотказно работать на протяжении всего эксплуатационного периода.
  • Уровень шума – немаловажным параметром при выборе жесткого диска является его уровень шума, который может мешать пользователю и окружающим. Каждый жесткий диск издает множество звуков, которые обусловлены наличием движущихся частей в конструкции запоминающего устройства. Если в планах стоит собрать максимально тихий компьютер, следует отдать предпочтение малошумным моделям или SSD накопителям, которые не издают звуков при работе.
  • Размер – стандартный встроенный жесткий диск для настольного ПК имеет стандартный размер 3.5 дюйма. 2.5-дюймовые модели используются в ноутбуках (но их также можно подключить к материнской плате, если использовать монтажный переходник).
  • Интерфейс подключения – большинство современных дисков использует интерфейс SATA, обеспечивающий высокую производительность и скорость работы накопителя. Помимо него существует IDE интерфейс, который некогда был популярен, но в данный момент утратил свою актуальность. Таким образом лучше выбирать накопитель с SATA интерфейсом.
Читайте так же:
Блок питания для маршрутизатора

Почему HDD лучше подходят для статического хранения информации?

Магнитные жесткие диски представляют собой надежные и эффективные носители, которые превосходно справляются с задачей «пассивного» хранения большого количества информации. Помимо этого, у пользователя всегда остается возможность дополнительно обезопасить себя от внезапного удаления данных при помощи функции «Дисковое пространство». С тем, как это сделать можно ознакомиться в статье «Как создать дисковое пространство или зеркальный том в Windows 8 или 10».

К этому следует добавить возможность восстановления данных при помощи специальной утилиты RS Partition Recovery, которая сможет в случаях случайного удаления, форматирования, уничтожения вирусами, повреждения в ходе изменения файловой системы и логической структуры накопителя и т.д.

RS Partition Recovery представляет собой продвинутый комплекс для восстановления данных с флешек, HDD дисков, SSD накопителей и карт памяти любых типов.

При помощи всего одной утилиты для восстановления информации можно быстро вернуть утерянные фотографии, видео, документы и другую ценную информацию.

Функционал RS Partition Recovery включает в себя быстрое сканирование для поиска недавно удаленной информации, а также полный анализ диска – специальная функция для поиска всех возможных для восстановления данных. Это позволяет оперативно вернуть данные или просканировать весь диск для восстановления информации, утерянной вплоть до нескольких месяцев назад. Чтобы ознакомиться со всеми особенностями и возможностями RS Partition Recovery, рекомендуем посетить официальную страницу программы.

Часто задаваемые вопросы

Это сильно зависит от емкости вашего жесткого диска и производительности вашего компьютера. В основном, большинство операций восстановления жесткого диска можно выполнить примерно за 3-12 часов для жесткого диска объемом 1 ТБ в обычных условиях.

Если файл не открывается, это означает, что файл был поврежден или испорчен до восстановления.

Используйте функцию «Предварительного просмотра» для оценки качества восстанавливаемого файла.

Когда вы пытаетесь получить доступ к диску, то получаете сообщение диск «X: не доступен». или «Вам нужно отформатировать раздел на диске X:», структура каталога вашего диска может быть повреждена. В большинстве случаев данные, вероятно, все еще остаются доступными. Просто запустите программу для восстановления данных и отсканируйте нужный раздел, чтобы вернуть их.

Пожалуйста, используйте бесплатные версии программ, с которыми вы можете проанализировать носитель и просмотреть файлы, доступные для восстановления.

Сохранить их можно после регистрации программы – повторное сканирование для этого не потребуется.

Ограничения на размер жёстких дисков персональных компьютеров

Объём жёсткого диска (также используются термины размер, ёмкость) — максимальное количество информации, которое способен вместить жёсткий магнитный диск.

Содержание

Ограничения ёмкости

По мере развития жёстких дисков их максимальная ёмкость стремительно увеличивалась. На пути этого увеличения время от времени возникали препятствия — ограничения широко используемых программных и аппаратных интерфейсов, используемых способов адресации, а также характеристики ПО. В этом списке приводятся ограничения (большей частью исторические) существующие или существовавшие в персональных компьютерах на размер жёстких дисков, разделов и/или файловых систем.

504 МБ

Ограничение MS-DOS на допустимое число головок — 16 (1024 цилиндра, 63 сектора на дорожку, 16 головок, 512 байт на сектор). [4] [14]

Программное обеспечение времен начала 1990-х годов, такое как MS-DOS, для работы с жёстким диском использовало вызов Int 13h.

Адресация блоков диска в вызове Int 13h выглядит как номера цилиндра (англ.  cylinder ), головки ( head ) и сектора ( sector ) — C/H/S. При этом на C отводится 10 бит, на H — 8, на S — 6.

Обработчик Int 13h в BIOS вписывает эти номера в управляющие регистры контроллера IDE. В этих регистрах на C отводится 16 бит, на H — 4, на S — 8.

Совокупность того и другого приводит к общему ограничению C/H/S = 10/4/6 бит (всего 20 бит), что позволяет адресовать 2 10 × 2 4 × ( 2 6 − 1 ) = 1024 × 16 × 63 = 1 032 192 times 2^<4>times (2^<6>-1)=1024times 16times 63=1,032,192> секторов [15] . При размере сектора в 512 байт это даёт 528 482 304 байт (504 МБ).

МаксимумBIOSIDEОбщее ограничение
Секторов на дорожку6325563
Поверхностей (головок)2561616
Дорожек1024655361024
Объём8 064 Мбайт127,5 Гбайт504 Мбайт
Читайте так же:
Можно ли через ноутбук раздать интернет

Данное ограничение стало ощутимым в 1994—1995 годах, примерно во время первых микропроцессоров Pentium. Для его обхода была придумана трансляция значений CHS в коде обработчика Int 13h в BIOS. Среди алгоритмов трансляции был и LBA (англ.  Linear Block Addressing ), когда CHS-адрес преобразовывается в линейный адрес, который уже и передаётся в контроллер диска.

Теоретически разные методы трансляции должны давать одинаковый результат, однако из-за особенностей некоторых реализаций трансляции, а также организации структур данных (разделов) на дисках, информация, записанная на диск в одной трансляции, могла быть недоступна в других трансляциях. Для смены режима трансляции диска необходимо было «переразбить» диск (пересоздать таблицу разделов), что означало потерю информации, уже записанной на диск.

8,4 ГБ

Максимально возможная величина для прерывания INT 13 — 1024 цилиндра, 63 сектора, 255 головок. Ограничение многих BIOS того времени (P1-P2), при попытке определить диск с размером больше 8 ГБ такие BIOS зависали, так как число головок обязано быть меньше 256. [4]

В интерфейсе Int 13h для номера цилиндра отведено 10 бит, для номера головки — 8, для номера сектора — 6, всего 24 бита. Это позволяет адресовать 2 10 × 2 8 × ( 2 6 − 1 ) = 1024 × 256 × 63 = 16 515 072 times 2^<8>times (2^<6>-1)=1024times 256times 63=16,515,072> секторов [15] , что при размере сектора в 512 байт даёт 8 455 716 864 байт (8064 МБ, 7,875 ГБ).

К тому времени, когда это стало проблемой — около 1997—1998 годов — стали массово использоваться полноценные многозадачные ОС, такие, как GNU/Linux, FreeBSD и Windows NT. Так как код Int 13h в BIOS никогда не разрабатывался с учётом многозадачности (в частности, он нагружает процессор бесконечным циклом в ожидании прерывания от контроллера), эти ОС не могли пользоваться Int 13h в своей работе. Вместо этого они — как ранее Novell NetWare — включали драйвер IDE, напрямую обращающийся к аппаратуре контроллера. Это снимало связанные с Int 13h ограничения при работе уже загруженной ОС, но проблема с загрузкой (запуском загрузчика системы из раздела диска, расположенного за доступной для BIOS границей) оставалась.

Для решения проблемы разработчики BIOS расширили Int 13h новыми подфункциями, принимавшими номер сектора как 64-битное целое число (LBA) без деления на C/H/S. Разработчики ОС внедрили поддержку этого новшества в загрузчики (в Windows — это один из пакетов обновления для Windows NT 4.0 в 1997 году), после чего проблема перестала существовать.

128 ГБ

Аппаратный интерфейс регистров IDE-контроллера стандартов с ATA-1 по ATA/ATAPI-5 использует 16 бит для номера C, 4 — для H и 8 — для S, всего 28 бит. Это позволяет адресовать 2 16 × 2 4 × ( 2 8 − 1 ) = 65536 × 16 × 255 = 267 386 880 times 2^<4>times (2^<8>-1)=65536times 16times 255=267,386,880> секторов [15] , что при размере сектора в 512 байт даёт 136 902 082 560 байт (127,5 ГБ).

Решение проблемы с таким ограничением возможно только на уровне аппаратуры (и обновления драйверов для использования новых возможностей аппаратуры). Оно было принято в стандарте ATA/ATAPI-6 в виде отправки адреса в контроллер дважды в определённой последовательности (48-bit LBA). [16]

В семействе Windows поддержка 48-bit LBA была добавлена в SP4 для Windows 2000 и в SP2 для Windows XP. Кроме того, в Windows 2000 также требуется явно активизировать эту поддержку с помощью редактирования реестра. [17]

Другие ограничения

Помимо ограничений интерфейсов IDE и BIOS, имелись и другие барьеры — ошибки и ограничения в программах, ОС и в коде BIOS.

Например, DOS не поддерживает работу с количеством головок больше 255, поэтому в этой операционной системе не приемлема геометрия, в которой количество головок равно 256. Это означает, что в компьютерах, где в BIOS не поддерживалась трансляция с заменой количества головок 256 на 255, доступ к дискам объёмом больше 2 10 × 2 7 × ( 2 6 − 1 ) = 1024 × 128 × 63 = 8 257 536 times 2^<7>times (2^<6>-1)=1024times 128times 63=8,257,536> секторов был под вопросом. При размере сектора в 512 байт это даёт 4 227 858 432 байт (4032 МБ, 3,94 ГБ).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector