Pmonline.ru

Пром Онлайн
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чистое питание для каждой микросхемы, часть 2: Выбор и использование блокировочных конденсаторов

Чистое питание для каждой микросхемы, часть 2: Выбор и использование блокировочных конденсаторов

В конце предыдущей статьи мы представили идею о том, что эффективность конкретного конденсатора как части схемы блокировки (обхода источника питания) зависит от двух его неидеальных характеристик, а именно от эквивалентного последовательного сопротивления (ESR) и эквивалентной последовательной индуктивности (ESL). На самом деле, оказывается, что точная емкость компонента не особенно важна в контексте блокировки источника питания. Вот почему производители микросхем могут с уверенностью предлагать одну ту же рекомендацию – «керамический конденсатор 0,1 мкФ на каждом выводе питания» – для широкого спектра аналоговых и цифровых микросхем. Почему важность емкости относительно незначительна? Напомним, что емкость – это просто отношение заряда, хранящегося на пластинах конденсатора, к напряжению на конденсаторе.

Таким образом, емкость говорит вам, сколько заряда конденсатор может хранить на вольт на конденсаторе. Если полностью заряженные конденсаторы 10 мкФ и 0,1 мкФ находятся параллельно между шинами земли и 5В, больший конденсатор имеет заряд 50×10 -6 кулонов (10×10 -6 кулонов на вольт), а меньший – 0,5×10 -6 кулонов (0,1×10 -6 кулонов на вольт).

Насколько величина заряда связана с применением конденсаторов в качестве блокировочных? Давайте посмотрим: ток (в амперах) определяется как количество заряда (в кулонах), проходящее через проводник в единицу времени (в секундах). Другой способ выразить это – через производную:

Следовательно, ток является скоростью изменения заряда во времени. Это означает, что если мы проинтегрируем ток по времени, то получим общий заряд:

Теперь давайте вернемся к промоделированным пульсациям питания, о которых говорилось в предыдущей статье. В цепи с 8 инверторами и паразитной индуктивностью 1 нГн, включенной последовательно с внутренним сопротивлением источника питания, генерируются следующие пульсации тока:

Пульсации тока в цепи Пульсации тока в цепи

LTspice не дает нам реального интегрирования, но мы можем вычислить его, умножив средний ток (26,3 мкА) на интервал (114 мкс – 98 мкс = 16 мкс). Таким образом, общий заряд, необходимый для компенсации этого возмущения, составляет 26,3 мкА × 16 мкс = 4,2×10 -10 кулонов. Это примерно в 1000 раз меньше заряда, чем мы хранили на нашем конденсаторе 0,1 мкФ.

Это моделирование очень упрощено – количество требуемого заряда будет зависеть от числа инверторов в микросхеме, электрических характеристик транзисторов и так далее. Тем не менее, мы всё же можем заключить на основе этих расчетов, что один конденсатор емкостью 0,1 мкФ может хранить намного больше заряда, чем требуется для компенсации высокочастотных импульсов тока, генерируемых цифровым переключением. И это, в свою очередь, демонстрирует, почему точная емкость блокировочного конденсатора не особенно важна: до тех пор, пока конденсатор может хранить достаточный заряд, значение емкости подходит. Оказывается, что 0,1 мкФ является удобным значение, но конденсатор 1 мкФ, или даже 0,01 мкФ, могут быть одинаково подходящими по емкости.

Итак, теперь у нас есть еще один вопрос: ясно, что конденсатор на 10 мкФ обеспечит более чем достаточное пространство для заряда для требований блокировки, так зачем заморачиваться с конденсатором 0,1 мкФ? Это возвращает нас к обсуждению ESR и ESL.

Секретная жизнь конденсатора

Как показывает следующая эквивалентная схема, внутри конденсатора происходит гораздо больше, чем просто емкость:

Эквивалентная схема конденсатора Эквивалентная схема конденсатора

Для данного обсуждения нам не нужно беспокоиться о Rпар (который учитывает ток утечки через диэлектрик) или Rдп и Cдп (которые вместе учитывают диэлектрическое поглощение). Таким образом, мы имеем следующую упрощенную эквивалентную схему:

Упрощенная эквивалентная схема конденсатора Упрощенная эквивалентная схема конденсатора

Проблема здесь должна быть очевидна. Наш блокировочный конденсатор предназначен для быстрого обеспечения током во время переходных возмущений на линии питания, но теперь у нас есть две составляющие, которые препятствуют протеканию тока: резистор, который представляет собой фиксированный импеданс независимо от частоты, и индуктивность, которая представляет увеличивающийся импеданс по мере увеличения частоты. На этом этапе важно понять, что ESR и ESL определяются главным образом «типом» конденсатора (керамика, тантал, полимер и т.д.) и корпусом. Керамические конденсаторы наиболее популярны при использовании в качестве блокировочных, поскольку они показывают низкие ESR и ESL (а также они недороги). Следующие в очереди, танталовые конденсаторы показывают умеренные значения ESR и ESL вместе с большим отношением емкости к размеру, и поэтому они используются в качестве больших блокировочных конденсаторов, предназначенных для компенсации низкочастотных колебаний на линии питания. Как для керамических, так и для танталовых конденсаторов более крупные корпуса обычно соответствуют более высоким ESL. В следующей таблице, взятой из технического отчета, опубликованного компанией AVX Corporation, перечислены ESL для разных корпусов поверхностного монтажа:

Читайте так же:
Можно ли отследить телеграмму

Зависимость эквивалентной последовательной емкости (ESL) SMD конденсатора от размера корпуса

Размер корпусаИндуктивность (пГн)
0603 (керамический)850
0805 (керамический)1050
1206 (керамический)1250
1210 (керамический)1020
0805 (танталовый)1600
1206 (танталовый)2200
1210 (танталовый)2250
2312 (танталовый)2800

Учитывание ESR при проектировании довольно просто: конденсаторы с малой емкостью, предназначенные для работы с высокочастотным шумом линии питания, должны иметь низкое значение ESR. Однако фактор ESL несколько сложнее. На следующем графике показан импеданс керамического конденсатора 0,1 мкФ размером 0603 с ESL 850 пГн и ESR 50 мОм:

Импеданс керамического конденсатора 0,1 мкФ размером 0603 Импеданс керамического конденсатора 0,1 мкФ размером 0603 в зависимости от частоты

Как обсуждалось в предыдущей статье, блокировочный конденсатор должен обеспечивать путь с низким импедансом, который позволяет высокочастотному шуму «обходить» микросхему на своем пути к узлу земли на схеме. Идеальный конденсатор легко выполнил бы это, так как импеданс конденсатора уменьшается по мере увеличения частоты. Но приведенный выше график говорит о другом: на определенной частоте ESL начинает доминировать над емкостью, поэтому импеданс начинает увеличиваться по мере увеличения частоты. Теперь давайте представим, что вместо керамического конденсатора мы решили использовать танталовый конденсатор 1 мкФ с ESL 2200 пГн и ESR 1,5 Ом:

Сравнение импедансов керамического конденсатора 0,1 мкФ и танталового конденсатора 1 мкФ в зависимости от частоты Сравнение импедансов керамического конденсатора 0,1 мкФ и танталового конденсатора 1 мкФ в зависимости от частоты

Импеданс танталового конденсатора сначала меньше, чем у керамического, из-за его более высокой емкости, но эффект более высоких ESR и ESL приводит к тому, что импеданс достигает минимума на 100 кГц, и в итоге на 10 МГц импеданс керамического конденсатора фактически в 10 раз ниже, чем у танталового. Таким образом, если схема восприимчива к шуму на частотах около 10 МГц, керамический конденсатор будет гораздо более эффективен, чем танталовый, хотя танталовый конденсатор и имеет более высокую емкость. Кроме того, если мы имеем дело с шумом на очень высоких частотах, даже керамический конденсатор может иметь слишком большой импеданс. В таком случае нам понадобится более низкий ESL, что означает меньший корпус. Следующий график сравнивает исходный конденсатор 0603 с керамическим конденсатором 0,01 мкФ только с 500 пГн ESL (значение, которое может быть достигнуто с корпусом 0402).

Сравнение импедансов керамического конденсатора 0,1 мкФ в корпусе 0603 и керамического конденсатора 0,01 мкФ в корпусе 0402 в зависимости от частоты Сравнение импедансов керамического конденсатора 0,1 мкФ в корпусе 0603 и керамического конденсатора 0,01 мкФ в корпусе 0402 в зависимости от частоты

На первый взгляд, кажется, что мы не можем выиграть: конденсатор 0402 улучшает эффективность на высоких частотах, но его импеданс хуже, чем у 0603, от нижней частоты и вплоть до 50 МГц. Хотя мы можем выиграть: мы можем поставить все три этих конденсатора параллельно, и на любой конкретной частоте общий импеданс будет определяться самым низким импедансом из трех.

Зависимость общего импеданса соединенных параллельно трех конденсаторов от частоты Зависимость общего импеданса соединенных параллельно трех конденсаторов от частоты

Итак, теперь у нас есть цепь обхода, которая поддерживает относительно низкий импеданс в очень широком диапазоне частот. Единственным сюрпризом здесь является пик на частоте 50 МГц, где общий импеданс выше, чем отдельные импедансы. Это называется антирезонансным пиком, и вам нужно следить за этим везде, где уменьшающийся (т.е. с доминирующей емкостью) импеданс пересекается с увеличивающимся (т.е. с доминирующей индуктивностью) импедансом.

Не разрушайте хороший проект плохой компоновкой

Правильная компоновка печатной платы является критическим аспектом проектирования блокировки, например, инженеры Texas Instruments обнаружили, что увеличение расстояния между конденсатором 0,1 мкФ и питающим выводом микросхемы с 0,3 дюйма (7,62 мм) до 1 дюйма (25,4 мм) увеличивает амплитуду пульсаций на шине питания с 250 мВ до 600 мВ. К счастью, правила компоновки блокировочных конденсаторов просты: минимизируйте сопротивление, минимизируйте индуктивность. Это достигается путем размещения конденсатора как можно ближе к питающему выводу и использования самых коротких возможных дорожек для всех соединений. В идеале, как земля, так и шина питания могут быть доступны через сквозные отверстия на полигоны.

Использование сквозных отверстий на полигоны земли и шины питания при размещении блокировочных конденсаторов Использование сквозных отверстий на полигоны земли и шины питания при размещении блокировочных конденсаторов

Подведем итоги о блокировочных конденсаторах

Теперь у нас достаточно информации, чтобы сформулировать краткий набор рекомендаций для успешной блокировки:

Можно ли поставить конденсатор меньшей емкости

В сетевых фильтрах часто используют хитрые конденсаторы с непонятными многим надписями — X1, Y2 итп. Это — помехоподавляющие конденсаторы. Разобраться в том, зачем они нужны и чем отличаются от «просто конденсаторов» поможет эта статья. imageПомех в сети всегда хватало — сначала они появлялись от щеточных двигателей, а теперь их в промышленных масштабах производят импульсные блоки питания. То, что помехи — это плохо, лишний раз распинаться не стоит. Сетевое напряжения в крайних случаях выглядит как-то вот так: imageВидно, что это сильно отличается от синусоиды, которая там должна быть. Для того, чтобы избавиться от помех, нужно сформировать беспрепятственный путь, по которому ток помехи может вернутся к источнику. Обычно такой путь, по закону Мерфи, лежит через самое чувствительное оборудование.

Наша задача сделать так, чтобы помехам не «захотелось» залазить в «нежные места» наших схем, но дать току помех течь туда, куда он «хотел» течь (в нейтраль, к примеру). С другой стороны, можно не доводить сеть до плачевного состояния, не выпуская помехи за пределы устройства.

image

Для того, чтобы уменьшить помехи, применяют фильтры. Тип фильтра и даже его расположение зависит от конкретного случая. К примеру, если помехи создаются одним источником (двигателем, например), то лучше всего поместить фильтр поближе к этому источнику – замкнуть ток помехи (как на рисунке выше).

Если помехи создаются распределенной схемой в металлическом корпусе (компьютерный блок питания), то фильтр лучше поместить как можно ближе к сетевому шнуру – замкнуть ток помехи внутри корпуса и соединить корпус с самым “чистым” местом схемы, чтобы он сам не излучал.

На рисунке – типичная схема фильтра компьютерного блока питания. Красным показан путь излучаемой помехи, а зеленым – помехи, передающейся по проводам.

image

Помеха имеет две составляющих – синфазную и противофазную.

Противофазная составляющая помехи — это напряжение помехи между фазой и нейтралью. Для ее подавления используются конденсаторы типа X. Само название X происходит от английского “across-the-line”, буква X похожа на крест (“cross”). На рисунке выше, это конденсатор – C1.

image

К этим конденсаторам предъявляются такие требования – они должны выдерживать максимально допустимые в сети всплески, не загораться при выходе из строя и не поддерживать горение.

Сейчас используются два основных подкласса X-конденсаторов – X1 и X2.

Емкость X конденсаторов варьируется от 0.1мкФ до 1мкФ. Какую емкость нужно выбрать для данного конкретного прибора можно выяснить только с осциллографом.

image

Синфазная составляющая помехи — это напряжение помехи между обоими сетевыми проводами и корпусом устройства. Понять, что это такое и зачем нужно немного сложнее.

Рассмотрим типичный импульсный источник питания. Между первичной и вторичной обмоткой трансформатора T1 всегда есть паразитная емкость (нарисована зелененьким). Представим, что конденсатора C7 пока нет. Высокочастотные пульсации беспрепятственно проникают со стока транзистора (самое шумное место схемы!) на вторичную обмотку через зелененькую емкость. Таким образом, на всей выходной части блока питания присутствуют пульсации (с частотой блока питания) относительно заземления и обоих сетевых проводов. Напряжение эти пульсаций может доходить до тысяч вольт. Наш мега-чувствительный прибор будет излучать эти пульсации в эфир, а излучать помехи – это тоже самое, что ловить помехи только с обратным знаком. Прибору будет плохо.

Теперь добавим конденсатор C7. Ток помехи, который просочился через зеленый конденсатор теперь может вернуться туда, откуда взялся по более короткому и менее сложному пути, чем в предыдущем случае и в наш мега-чувствительный прибор ему больше течь не хочется!

Заметьте, что конденсатор C7 теперь связывает сеть с выходом блока питания! Но ведь это-же опасно! Человек, который дотронется одновременно к выходу такого блока питания (к корпусу устройства) и к заземлению (к батареи отопления, к примеру), получит заметный, но не страшный удар. А что будет, если конденсатор C7 сломается? Правильно, выход блока питания станет “электрическим стулом”. Именно поэтому и сделали конденсаторы типа Y – они предназначены для работы в тех местах, где выход их из строя угрожает жизни людей.

Последовательное и параллельное соединение конденсаторов. Подбор при замене

Практически ни одно электронное устройство не обходится без конденсатора. Он может стоять на входе или выходе устройства, перед или после некоторых элементов. Применяется последовательное и параллельное соединение конденсаторов. Как и для чего их подключать тем или иным способом и будем обсуждать.

Что такое конденсатор и его основные характеристики

Конденсатор — это радиодеталь, которая работает как накопитель электрической энергии. Чтобы понятнее было, как он работает, его можно представить как своего рода небольшой аккумулятор. Обозначается двумя параллельными чёрточками.

Схематическое изображение конденсаторов

Обозначения различных типов конденсаторов на схемах. Чаще всего из строя выходят электролитические конденсаторы, так что стоит запомнить их обозначение

Основная характеристика конденсатора любого типа — ёмкость. Это то количество заряда, которое он в состоянии накопить. Измеряется в Фарадах (сокращенно просто буква F или Ф), а вернее, в более «мелких» единицах:

  • микрофарадах — мкФ это 10 -6 фарада,
  • нанофарадах — нФ это 10 -9 фарада;
  • пикофарадах — пФ это 10 -12 фарада.

Вторая важная характеристика — номинальное напряжение. Это то напряжение, при котором гарантирована длительная безотказная работа. Например, 4700 мкФ 35 В, где 35 В — это номинальное напряжение 35 вольт.

Так выглядит конденсатор

У крупных по размеру конденсаторов, ёмкость и напряжение указаны на корпусе

Нельзя ставить конденсатор в цепь с более высоким напряжением чем то, которое на нём указано. В противном случае он быстро выйдет из строя.

Можно использовать конденсаторы на 50 вольт вместо конденсаторов на 25 вольт. Но это порой нецелесообразно, так как те, которые рассчитаны на более высокое напряжение, дороже, да и габариты у них больше.

Что он из себя представляет и как работает

В самом простейшем случае конденсатор состоит из двух токопроводящих пластин (обкладок), разделённых слоем диэлектрика.

Что такое электрический конденсатор

Между обкладками находится слой диэлектрика — материала плохо проводящего электрический ток

На пластины подаётся постоянный или переменный ток. Вначале, пока энергия накапливается, потребление энергии конденсатором высокое. По мере «наполнения» ёмкости оно снижается. Когда заряд набран полностью, токопотребления вообще нет, источник питания как бы отключается. В это время конденсатор сам начинает отдавать накопленный заряд. То есть, он на время становится своеобразным источником питания. Поэтому его и сравнивают с аккумулятором.

Где и для чего используются

Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:

  • Для сглаживания скачков сетевого напряжения. В таком случае их ставят на входе устройств, перед микросхемами, которые требовательны к параметрам питания.
  • Для стабилизации выходного напряжения блоков питания. В таком случае надо искать их перед выходом.

Внешний вид электролитических цилиндрических конденсаторов

Часто можно увидеть электролитические цилиндрические конденсаторы

Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.

Как подключать конденсаторы

В электротехнике есть два основных вида соединения деталей — параллельное и последовательное. Конденсаторы также можно подключать по любому из указанных способов. Есть ещё особая — мостовая схема. Она имеет собственную область использования.

Конденсаторы подключат параллельно и последовательно

В схеме может быть последовательное и параллельное соединение конденсаторов

Параллельное подключение конденсаторов

При параллельном соединении все конденсаторы объединены двумя узлами. Чтобы параллельно подключить конденсаторы, скручиваем попарно их ножки, обжимаем пассатижами, потом пропаиваем. У некоторых конденсаторов большие корпуса (банки), а выводы маленькие. В таком случае используем провода (как на рисунке ниже).

Параллельное соединение конденсаторов

Так физически выглядит параллельное подключение конденсаторов

Если конденсаторы электролитические, следите за полярностью. На них должны стоять «+» или «-«. При их параллельном подключении соединяем одноимённые выводы — плюс к плюсу, минус — к минусу.

Расчёт суммарной ёмкости

При параллельном подключении конденсаторов их номинальная ёмкость складывается. Просто суммируете номиналы всех подключённых элементов, сколько бы их ни было. Два, три, пять, тридцать. Просто складываем. Но следите, чтобы размерность совпадала. Например, складывать будем в микрофарадах. Значит, все значения переводим в микрофарады и только после этого суммируем.

Как рассчитать ёмкость при параллельном соединении конденсаторов

Расчёт ёмкости при параллельном подключении конденсаторов

Когда на практике применяют параллельное соединение конденсаторов? Например, тогда, когда надо заменить «пересохший» или сгоревший, а нужного номинала нет и бежать в магазин некогда или нет возможности. В таком случае подбираем из имеющихся в наличии. В сумме они должны дать требуемое значение. Все их проверяем на работоспособность и соединяем по приведенному выше принципу.

Пример расчёта

Например, включили параллельно два конденсатора — 8 мкФ и 12 мкФ. Следуя формуле, их номиналы просто складываем. Получаем 8 мкФ + 12 мкФ = 20 мкФ. Это и будет суммарная ёмкость в данном случае.

Рассчитать емкость параллельно соединенных конденсаторов

Пример расчёта конденсаторов при параллельном подключении

Последовательное соединение

Последовательным называется соединение, когда выход одного элемента соединяется со входом другого. Сравнить можно с вагонами или цепочкой из лампочек. По такому же принципу последовательно соединяют и конденсаторы.

Как последовательно соединять конденсаторы

Вот что значит последовательно соединить конденсаторы

При подключении полярных электролитических «кондеров» надо следить за соблюдением полярности. Плюс первого конденсатора подаете на минус второго и так далее. Выстраиваете цепочку.

Существуют неполярные (биполярные) электролитические конденсаторы. При их соединении нет необходимости соблюдать полярность.

Как определить ёмкость последовательно соединенных конденсаторов

При последовательном соединении конденсаторов суммарная ёмкость элементов будет меньше самого маленького номинала в цепочке. То есть, ёмкость последовательно соединённых конденсаторов уменьшается. Это также может пригодиться при ремонте техники — замена конденсатора требуется часто.

Как подключать конденсаторы последовательно

Последовательно соединённые конденсаторы

Использовать формулу расчёта приведённую выше не очень удобно, поэтому её обычно используют в преобразованном виде:

Как считать емкость при последовательном соединении

Формула расчёта ёмкости при последовательном соединении

Это формула для двух элементов. При увеличении их количества она становится значительно сложнее. Хотя, редко можно встретить больше двух последовательных конденсаторов.

Пример расчёта

Какая суммарная ёмкость будет если конденсаторы на 12 мкФ и 8 мкФ соединить последовательно? Считаем: 12*8 / (12+8) = 96 / 20 = 4,8 мкФ. То есть, такая цепочка соответствует номиналу 4,8 мкФ.

Как рассчитать емкость конденсатора

Пример расчета ёмкости при последовательном подключении конденсаторов

Как видите, значение меньше чем самый маленький номинал в последовательности. А если подключить таким образом два одинаковых конденсатора, то результат будет вполовину меньше номинала. Например, рассчитаем для двух ёмкостей по 12 мкФ. Получим: 12*12 / (12 + 12) = 144 / 24 = 6 мкФ. Проверим для 8 мкФ. Считаем: 8*8 / (8+8) = 64 / 16 = 4 мкФ. Закономерность подтвердилась. Это правило можно использовать при подборе номинала.

Почему электролитические конденсаторы выходят из строя и что делать

Зачастую, чтобы отремонтировать вышедшую из строя электронную технику, достаточно найти и заменить вздувшиеся конденсаторы. Дело в том, что срок жизни их небольшой — 1000-2000 тысячи рабочих часов. Потом он обычно выходит из строя и требуется его замена. И это при нормальном напряжении не выше номинального. Так происходит потому, что диэлектрик в конденсаторах, чаще всего, жидкий. Жидкость понемногу испаряется, меняются параметры и, рано или поздно, конденсатор вздувается.

Вышедшие из строя можно определить по внешнему виду или измерить

Электролитические конденсаторы имеют специальные насечки на верхушке корпуса, чтобы при выходе из строя избежать взрыва

Высыхает электролит не только во время работы. Даже просто «от времени». Это конструктивная особенность электролитических конденсаторов. Поэтому не стоит ставить выпаянные из старых схем конденсаторы или те, которые несколько лет (или десятков лет) хранятся в мастерской. Лучше купить «свежий», но проверьте дату производства.

Можно ли продлить срок эксплуатации конденсаторов? Можно. Надо улучшить теплоотвод. Чем меньше греется электролит, тем медленнее высыхает. Поэтому не стоит ставить аппаратуру вблизи отопительных приборов.

Продлить срок службы конденсаторов можно улучшив охлаждение

Для улучшения отвода тепла ставят радиаторы

Второе — надо следить за тем, чтобы хорошо работали кулера. Третье — если рядом стоят детали, которые активно греются во время работы, надо конденсаторы каким-то образом от температуры защитить.

Как подобрать замену

Если часто приходится менять один и тот же конденсатор, его лучше заменить на более «мощный» — той же ёмкости, но на большее напряжение. Например, вместо конденсатора на 25 вольт, поставить конденсатор на 35 вольт. Только надо иметь в виду, что более мощные конденсаторы имеют большие размеры. Не всякая плата позволяет сделать такую замену.

Как найти замену

Конденсатор той же ёмкости, но рассчитанный на большее напряжение, имеет больший размер

Можно поставить параллельно несколько конденсаторов с тем же напряжением, подобрав номиналы так, чтобы получить требуемую ёмкость. Что это даст? Лучшую переносимость пульсаций тока, меньший нагрев и, как следствие, более продолжительный срок службы.

Что будет, если поставить конденсатор большей ёмкости?

Часто приходит в голову идея поставить вместо сгоревшего или вздувшегося конденсатор большей ёмкости. Ведь он должен меньше греться. Так, во всяком случае, кажется. Ёмкость практически никак не связана со степенью нагрева корпуса. И в этом выигрыша не будет.

Как устроен электрический конденсатор

Устройство электролитического конденсатора

По нормативным документам отклонение номинала конденсаторов допускается в пределах 20%. Вот на эту цифру можете спокойно ставить больше/меньше. Но это может привести к изменениям в работе устройства. Так что лучше найти «родной» номинал. И учтите, что не всегда можно ставить большую ёмкость. Можно если конденсатор стоит на входе и сглаживает скачки питания. Вот тут большая ёмкость уместна, если для её установки достаточно места. Это точно нельзя делать там, где конденсатор работает как фильтр, отсекающий заданные частоты.

Можно менять на ту же ёмкость, но чуть более высокое напряжение. Это имеет смысл. Но размеры такого конденсатора будут намного больше. Не в любую плату получится его установить. И учтите, что корпус его не должен соприкасаться с другими деталями.

О конденсаторах vol.3

Превью топика

Обстоятельно изучив предыдущую статью, нашел что ни одного слова не сказано об устройстве и параметрах конденсатора. А ведь многие из нас или уже забыли школьный курс физики, или прогуляли или вовсе столь любознательны, что он у них еще не начался по школьной программе (( а может и не начнётся — не знаю что теперь там происходит, в этой школе).

К делу!

И так, дорогой читатель для начала предлагаю найти конденсатор. Нашел?
Теперь расковыряй его, дружок. Что ты видишь?

Вариантов не так много:
Керамические конденсаторы для гитар1) Керамический конденсатор — ты увидишь 2 металлические пластины с малюсенькой прослойкой этой самой керамики (т.е. практически глины, специального состава). Сверху он был покрыт защитным слоем. Керамические конденсаторы не дороги и практичны. Звук? А это как с фломастерами — каждый на вкус и цвет разный. (Читай предыдущую статью)

Плёночные гитарные конденсаторы
2) Плёночный конденсатор — тут твоему взору, скорее всего, предстанет фольга с прослойкой плёнки. Этот вид конденсаторов наиболее распространён в гитарах. Да и не только гитарах. Видов плёночных конденсаторов множество — разных составов и форм. Сверху они также покрыты защитным слоем. Этот вид конденсаторов дороже керамических. Насколько? Зависит от состава (т.е. материалов) и параметров конденсатора. Дороже может быть от 2 до 100 раз.

бумажно масляные гитарные конденсаторы3)Бумажно-масляный конденсатор.
Поздравляю, ты разобрал самый культовый из всех конденсаторов! :)) Эти конденсаторы представляют частный вид плёночных. Фольга в них используется в качестве обкладок, диэлектрик — бумага, пропитанная маслом. Имеют основной недостаток — старение. Т.к. масло испаряется и бумага (т.е. диэлектрик) меняет свои свойства. Эти конденсаторы применяют также при производстве ламповых усилителей (раньше — за неимением других, сейчас — в силу культовости, стараясь сделать под винтаж).

Возвратимся к плёночным конденсаторам в целом! — в них бумага, пропитанная маслом, заменена на плёнку из полимеров и различных других материалов. Они лишены недостатков бумажных, топовые модели применяются в производстве Hi-end аппаратуры.

Да!
А еще ты скорее всего обратил внимание на надписи, которые были на конденсаторе.
Например: .022 50V
Таким образом производитель показывает параметры своих изделий.
Первый — емкость. Второй — максимальное напряжение.

Емкость — параметр, влияющий на частоту среза. Чем больше емкость тем ниже частота среза. Т.е. грубо говоря — чем больше это значение, тем меньше высоких частот будет в сигнале на выходе (если тон включен).

Вот таблица емкостей конденсаторов и их обозначений:

Почему на Fender, как правило 0,022 мкФ (микро Фарада)?
Потому-что ВЧ у синглов больше, соответственно меньшей емкостью можно срезать эти ВЧ так, чтобы было заметно.

А почему на Gibson 0,047 мкФ (микро Фарада)?
А потому-что резонанс и ВЧ составляющая меньше на хамбакерах. И не всегда, установив конденсатор в 0,022 мкФ вы сможете заметить, что ручка тона есть. А 0,047 мкФ — нормально, уже заметно срезает.

А можно ли поставить конденсатор еще большей емкости?
Можно. Срез ВЧ будет еще больше.

А как же напряжение?
Напряжение — для гитарного темброблока, особенно с пассивной электроникой, фактор второстепенный. Т.к. напряжения в этих цепях значительно меньше максимального значения.
_____________________________________________________________

Для более дотошных хочу добавить еще несколько слов.

Теперь обратим свой взор на общее устройство:
Любой конденсатор — это 2 металлические пластины, разделённые диэлектриком, который не проводит электрический ток.
Конденсатор - принцип работыПринцип — с одной и с другой стороны диэлектрика, на пластинах скапливаются противоположные заряды, создавая разность потенциалов (т.е. количества носителей заряда) между обкладками. Свойство накапливать заряд называют — емкостью.
Чем длиннее пластины и меньше расстояние — тем больше зарядов конденсатор может накопить, тем больше емкость (Вспоминаем формулу!).

Далее:
Материал — важный фактор. Т.к. заряды в конденсаторе между собой взаимодействуют посредством электрического поля, это электрическое поле между обкладками в свою очередь зависит от материала.
От материалов и расстояния также зависит и максимальное напряжение, которое конденсатор может выдержать.

Третье — активное сопротивление конденсатора (т.е. зависящее от частоты сигнала):

Где C — это емкость в фарадах (да, нужно будет не забыть перевести), W — угловая частота. W=2пF п=3,14, F — это частота сигнала в герцах. Теперь, зная емкость конденсаторы, вы можете посчитать — какое сопротивление он оказывает для каждой конкретной частоты.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector