Pmonline.ru

Пром Онлайн
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Можно ли разбить числа

Можно ли разбить числа

Знаете ли вы, что среди зрителей, сидящих в Большом театре во время спектакля, обязательно есть люди, родившиеся в один и тот же день одного и того же месяца? Считайте сами; в зале Большого театра 2000 мест. И даже если не все они заполнены, можно смело утверждать, что на спектакле собралось более 366 человек. Но 366 — это максимально возможное число дней в году, считая 29 февраля. Итак, для 367 — го зрителя просто не остается свободной от дней рождений его соседей по залу даты в году.

Логический прием, использованный в приведенном доказательстве, называется принципом Дирихле – по имени Петера Густава Дирихле (1805-1895) немецкого математика, автора описанного метода.

Вот общая форма принципа Дирихле:

Если k∙n+1 предмет разложен в k ящиков, то, по крайней мере, в одном из ящиков лежит не меньше, чем n+1 предмет.

По традиции в популярной литературе принцип Дирихле объясняют на примере “зайцев” и “клеток’:

Если N зайцев сидят в n клетках и N>n, то хотя бы в одной клетке сидит более одного зайца.

Этим принципом в неявном виде пользовался, например, Ферма в XVII веке; но широко применяться в доказательствах он стал лишь с прошлого века! Несмотря на свою простоту, это рассуждение оказалось чрезвычайно плодотворным. Вот только один пример. Если делить одно целое число на другое, например 1 на 7, что мы получим? Будем делить в столбик, получая все новые и новые остатки. Но поскольку остатками от деления на 7 могут быть лишь числа 1, 2, 3, 4, 5, 6 и 0, мы либо должны на каком-то шаге получить 0 и остановиться, либо после шестого деления один из остатков обязан повториться. Дальше делить нет смысла — этот остаток мы уже разделили на 7, и все результаты у нас перед глазами. Ясно, что деление будет продолжаться бесконечно, но мы будем получать снова и снова одну и ту же последовательность цифр — период.

Выходит, при делении целого числа на целое мы получим либо конечную десятичную дробь, либо периодическую — и более ничего!

Как видим – все гениальное просто, и к этому же относится и принцип Дирихле.

В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.

Перед нами миллион «кроликов»-елок и, увы, всего лишь 600001 клетка с номерами от 0 до 600000. Каждый «кролик»-елка сажается нами в клетку с номером, равным количеству иголок на этой елке. Так как «кроликов» гораздо больше, чем клеток, то в какой-то клетке сидит по крайней мере два «кролика» – если бы в каждой сидело не более одного, то всего «кроликов»-елок было бы не более 600001 штук. Но ведь, если два «кролика»-елки сидят в одной клетке, то количество иголок у них одинаково.

Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Остатки по модулю 11 – «клетки», числа – «кролики».

В городе Ленинграде живет более 5 миллионов человек. Докажите, что у каких-то двух из них одинаковое число волос на голове, если известно, что у любого человека на голове менее миллиона волос.

Постройте миллион клеток с номерами от 0 до 999999 и рассадите там людей, поместив каждого ленинградца в клетку, номер которой равен количеству волос на его голове.

В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.

25 ящиков-«кроликов» рассадим по 3 клеткам-сортам. Так как 25 = 3 • 8 + 1, то применим «обобщенный принцип Дирихле» для N = 3, k = 8 и получим, что в какой-то клетке-сорте не менее 9 ящиков.

В стране Курляндии m футбольных команд (по 11 футболистов в каждой). Все футболисты собрались в аэропорту для поездки в другую страну на ответственный матч. Самолет сделал 10 рейсов, перевозя каждый раз по m пассажиров. Еще один футболист прилетел к месту предстоящего матча на вертолете. Докажите, что хотя бы одна команда была целиком доставлена в другую страну.

Так как перевезено всего 10m + 1 футболистов, то, рассадив их по клеткам-командам, получаем, что в какой-то клетке сидит 11 футболистов.

Дано 8 различных натуральных чисел, не больших 15. Докажите, что среди их положительных попарных разностей есть три одинаковых.

Различных разностей может быть 14 – от 1 до 14 – это те 14 клеток, в которые мы будем сажать кроликов. Кто же будет нашими кроликами? Ими, конечно, должны быть разности между парами данных нам натуральных чисел. Однако имеется 28 пар и их можно рассадить по 14 клеткам так, что в каждой клетке будет сидеть ровно два «кролика» (и значит, в каждой меньше трех). Здесь надо использовать дополнительное соображение: в клетке с номером 14 может сидеть не более одного кролика, ведь число 14 можно записать как разность двух натуральных чисел, не превосходящих 15, лишь одним способом: 14 = 15 – 1. Значит, в оставшихся 13 клетках сидят не менее 27 кроликов, и применение обобщенного принципа Дирихле дает нам желаемый результат.

Докажите, что в любой компании из 5 человек есть двое, имеющие одинаковое число знакомых в этой компании.

Читайте так же:
Можно ли сделать копию ключа от домофона

Вариантов числа знакомых всего 5: от 0 до 4. Осталось заметить, что если у кого-то 4 знакомых, то ни у кого не может быть 0 знакомых.

Несколько футбольных команд проводят турнир в один круг. Докажите, что в любой момент турнира найдутся две команды, сыгравшие к этому моменту одинаковое число матчей.

Пусть всего команд n. Тогда вариантов числа команд, с которыми сыграла данная команда n: от 0 до n – 1. Осталось заметить, что если одна команда сыграла со всеми n – 1-й, то никакая другая команда не могла ни с кем не сыграть.

а) Какое наибольшее число полей на доске 8 ? 8 можно закрасить в черный цвет так, чтобы в любом уголке вида из трех полей было по крайней мере одно незакрашенное поле?

б) Какое наименьшее число полей на доске 8 ? 8 можно закрасить в черный цвет так, чтобы в каждом уголке вида было по крайней мере одно черное поле?

а) Разбейте доску на 16 квадратиков 2 ? 2 – это клетки; кроликами, конечно, будут черные поля.

10 школьников на олимпиаде решили 35 задач, причем известно, что среди них есть школьники, решившие ровно одну задачу, школьники, решившие ровно две задачи и школьники, решившие ровно три задачи. Докажите, что есть школьник, решивший не менее пяти задач.

Из условий следует, что найдутся 7 школьников, решивших 35 – 6 = 29 задач. Так как 29 = 4 • 7 + 1, то найдется школьник, решивший не менее пяти задач.

Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?

Ответ: 16 королей. Разобьём доску на 16 квадратиков, в каждом может быть не более одного короля.

Докажите, что равносторонний треугольник нельзя покрыть двумя меньшими равносторонними треугольниками.

Каждый из меньших треугольников не может накрывать более одной вершины большого треугольника.

В квадрат со стороной 1 метр бросили 51 точку. Докажите, что какие-то три из них можно накрыть квадратом со стороной 20 см.

Разобьем наш квадрат на 25 квадратов со стороной 20 см. По обобщенному принципу Дирихле, в какой-то из них попадет по крайней мере три точки из 51 брошенной.

Пятеро молодых рабочих получили на всех зарплату – 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.

Если бы каждый из рабочих мог купить магнитофон, то у них в сумме было бы не менее 5 • 320 = 1600 рублей.

В бригаде 7 человек и их суммарный возраст – 332 года. Докажите, что из них можно выбрать трех человек, сумма возрастов которых не меньше 142 лет.

Покрасим всю сушу в синий цвет, а все точки, диаметрально противоположные суше – в красный. Тогда обязательно есть точка, которая покрашена в оба цвета. В ней и надо рыть туннель.

Докажите, что среди степеней двойки есть две, разность которых делится на 1987.

Рассмотрите 1988 степеней и их остатки по модулю 1987.

Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

Квадраты при делении на 100 могут давать лишь 51 остаток, так как остатки x и 100 – x при возведении в квадрат дают один и тот же остаток.

Докажите, что среди чисел, записываемых только единицами, есть число, которое делится на 1987.

Рассмотрим 1988 чисел-«кроликов» 1, 11, 111, …, 111 … 11 (1988 единиц) и посадим их в 1987 клеток с номерами 0, 1, 2, …, 1986 – каждое число попадает в клетку с номером, равным остатку от деления этого числа на 1987. Тогда (по принципу Дирихле) найдутся два числа, которые имеют одинаковые остатки при делении на 1987. Пусть это числа 11 … 11 (m единиц) и 11 … 11 (n единиц), причем m > n. Но их разность, которая делится на 1987, равна 11 … 1100 … 00 (m – n единиц и n нулей). Сократим все нули – ведь они не имеют никакого отношения к делимости на 1987 – и получим число из одних единиц, которое делится на 1987.

Докажите, что существует степень тройки, оканчивающаяся на 001.

Если 3m и 3n – степени тройки, дающие один и тот же остаток при делении на 1000, то 3m – 3n = 3n(3m – n – 1) делится на 1000 (мы считаем для определенности, что m > n).

В клетках таблицы 3 ? 3 расставлены числа – 1, 0, 1. Докажите, что какие-то две из 8 сумм по всем строкам, всем столбцам и двум главным диагоналям будут равны.

Эти суммы могут принимать лишь 7 разных значений: от – 3 до 3.

Сто человек сидят за круглым столом, причем более половины из них – мужчины. Докажите, что какие-то два мужчины сидят друг напротив друга.

Разобьем всех людей на 50 пар так, что в каждой паре – два человека, сидящих друг напротив друга. Ясно, что в одной из этих пар-«клеток» оба человека – мужчины.

15 мальчиков собрали 100 орехов. Докажите, что какие-то два из них собрали одинаковое число орехов.

Если это не так, то, очевидно, что мальчики собрали не менее, чем 0 + 1 + 2 + … + 14 = 105 орехов – противоречие.

Цифры 1, 2, …, 9 разбили на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.

Читайте так же:
Можно ли морозильный ларь держать на морозе

Произведение чисел во всех группах равно 9! = 362880, а 71? = 357911.

В таблице 10 ? 10 расставлены целые числа, причем любые два числа в соседних клетках отличаются не более, чем на 5. Докажите, что среди этих чисел есть два равных.

Поскольку от любой клетки до любой другой можно добраться, не более 19 раз сдвинувшись в соседнюю клетку, то все числа находятся между числами a и a + 95, где a – минимальное из всех расставленных чисел. Значит, среди этих чисел не более 96 различных.

Докажите, что среди любых 6 человек есть либо трое попарно знакомых, либо трое попарно незнакомых.

У данного человека среди остальных пяти есть либо не менее трех знакомых, либо не менее трех незнакомых ему. Разберем, например, первый случай. Среди этих трех людей есть либо двое знакомых – тогда они вместе с выбранным нами исходно человеком образуют нужную тройку, либо они все трое попарно незнакомы.

На клетчатой плоскости дано 5 произвольных узлов сетки. Докажите, что середина одного из отрезков, соединяющих какие-то две из этих точек, также является узлом сетки.

Рассмотрите координаты этих точек и их остатки при делении на 2.

На складе имеется по 200 сапог 41, 42 и 43 размеров, причем среди этих 600 сапог 300 левых и 300 правых. Докажите, что из них можно составить не менее 100 годных пар обуви.

В каждом размере каких-то сапог меньше: правых или левых. Выпишем эти типы сапог по размерам. Какой-то тип, например, левый, повторится по крайней мере дважды, например, в 41 и 42 размерах. Но так как количество левых сапог в этих размерах суммарно не меньше 100 (почему?), то мы имеем не менее 100 годных пар обуви в этих размерах.

В алфавите языка племени Ни-Бум-Бум 22 согласных и 11 гласных, причем словом в этом языке называется произвольное буквосочетание, в котором нет двух согласных подряд и ни одна буква не использована дважды. Алфавит разбили на 6 непустых групп. Докажите, что из всех букв одной из групп можно составить слово.

Докажите, что в одной из групп разность между числом согласных и числом гласных не больше 1.

Докажите, что среди любых 10 целых чисел найдется несколько, сумма которых делится на 10.

Рассмотрите 10 сумм: x1, x1 + x2, …, x1 + x2 + … + x10 и их остатки при делении на 10.

Дано 11 различных натуральных чисел, не больших 20. Докажите, что из них можно выбрать два числа, одно из которых делится на другое.

Разбейте числа от 1 до 20 на 10 наборов, в каждом из которых в любой паре чисел одно делится на другое: 11, 13, 15, 17, 19, 1,2,4,8,16, 3,6,12, 5,10,20, 7,14, 9,18.

Разбиение множества на классы.

Говорят, что множество Х разбито на попарно непересекающиеся подмножества или классы, если выполнены следующие условия:

1) любые два подмножества попарно не пересекаются;

2) объединение всех подмножеств совпадает с исходным множеством Х.

Разбиение множества на классы называют классификацией.

Классификацию можно выполнять при помощи свойств элементов множества.

Например, натуральные числа можно разбить на четные и нечетные. Буквы русского языка можно разбить на гласные и не гласные. Вообще, если на множестве Х задано одно свойство А, то это множество разбивается на два класса: первый класс – объекты, обладающие свойством А, второй класс – объекты, не обладающие свойством А.

Если элементы множества обладают двумя независимыми свойствами, то все множество разбивается на 4 класса.

Например, на множестве натуральных чисел заданы два свойства: «быть кратным 2» и «быть кратным 3». При помощи этих свойств в множестве N можно выделить два подмножества А и В. Эти множества пересекаются, но ни одно из них не является подмножеством другого. Тогда в первый класс войдут числа, кратные 2 и 3, во второй – кратные 2, но не кратные 3, в третий – кратные 3, но не кратные 2, в четвертый – не кратные 2 и не кратные 3.

Пример 5. Пусть Х – множество четырехугольников, А, В и С – его подмножества. Можно ли говорить о разбиении множества Х на классы А, В и С, если:

а) А – множество параллелограммов, В – множество трапеций, С – множество четырехугольников, противоположные стороны которых не параллельны;

б) А – множество параллелограммов, В – множество трапеций, С – множество четырехугольников, имеющих прямой угол?

а) Множества А, В и С попарно не пересекаются. Действительно, если у четырехугольника, противоположные стороны не параллельны, то он не может быть параллелограммом или трапецией. В параллелограмме противоположные стороны попарно параллельны, поэтому он не может принадлежать ни множеству В, ни множеству С. Наконец, в трапеции две противоположные стороны параллельны, а две другие не параллельны, поэтому трапеция не может принадлежать ни множеству А, ни множеству С. Объединение множеств А, В и С даст все множество четырехугольников. Условия классификации выполнены, множество всех четырехугольников можно разбить на параллелограммы, трапеции и четырехугольники, противоположные стороны которых не параллельны.

б) Множества А и В не пересекаются, но множества А и С имеют общие элементы, примером может служить прямоугольник, множества В и С тоже пересекаются: общим элементом является прямоугольная трапеция. Следовательно, нарушено первое условие классификации. Не выполняется и второе условие, так как некоторые четырехугольники не попадают ни в одно из подмножеств А, В или С, таким является четырехугольник с непараллельными сторонами и непрямыми углами. В этом случае множество Х на классы А, В и С не разбивается.

Читайте так же:
Можно ли скрывать исходный код компонента

Дополнительные задания:

Решите задачу используя круги Эйлера: В группе английский язык изучают 15 студентов, немецкий – 10 студентов, а французский – 5, причем 3 студента изучают одновременно английский и немецкий языки, 2 студента изучают одновременно английский и французский языки, 1 студент изучает одновременно французский и немецкий языки. Сколько всего человек в классе изучают эти иностранные языки? Сколько человек изучают только английский язык? немецкий язык? французский язык?

Содержание отчета:

1. Указать какие теоретические знания были использованы в ходе выполнения работы.

2. Указать какие умения и навыки были приобретены в ходе выполнения работы.

Контрольные вопросы:

1) Какое множество называется конечным? пустым?

2) Что называется пересечением двух множеств?

3) Что такое диаграмма Эйлера-Венна?

4) Известно, что А – множество спортсменов группы, В – множество отличников группы. Сформулируйте условия, при которых: а) А∩В=Ø б)АUВ=А.

Занимательная математика: правило Гаусса

Цикл «Занимательная математика» посвящен деткам увлекающимся математикой и родителям, которые уделяют время развитию своих детей, «подкидывая» им интересные и занимательные задачки, головоломки.

Первая статья из этого цикла посвящена правилу Гаусса.

Немного истории

Известный немецкий математик Карл Фридрих Гаусс (1777-1855) с раннего детства отличался от своих сверстников. Несмотря на то, что он был из небогатой семьи, он достаточно рано научился читать, писать, считать. В его биографии есть даже упоминание того, что в возрасте 4-5 лет он смог скорректировать ошибку в неверных подсчетах отца, просто наблюдая за ним.

Учитель объясняет правило Гаусса

Одно из первых его открытий было сделано в возрасте 6 лет на уроке математики. Учителю было необходимо увлечь детей на продолжительное время и он предложил следующую задачку:

Найти сумму всех натуральных чисел от 1 до 100.

Юный Гаусс справился с этим заданием достаточно быстро, найдя интересную закономерность, которая получила большое распространение и применяется по сей день при устном счете.

Давайте попробуем решить эту задачку устно. Но для начала возьмем числа от 1 до 10:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

Посмотрите внимательно на эту сумму и попробуйте догадаться, что же необычного смог разглядеть Гаусс? Для ответа необходимо хорошо представлять себе состав чисел.

Гаусс сгруппировал числа следующим образом:

(1+10) + (2+9) + (3+8) + (4+7) + (5+6)

Таким образом маленький Карл получил 5 пар чисел, каждая из которых в отдельности в сумме дает 11. Тогда, чтобы вычислить сумму натуральных чисел от 1 до 10 необходимо

Вернемся к первоначальной задаче. Гаусс заметил, что перед суммированием необходимо группировать числа в пары и тем самым изобрел алгоритм, благодаря которому можно быстро сложить числа от 1 до100:

1 + 2 + 3 + 4 + 5 + … + 48 + 49 + 50 + 51 + 52 + 53 + … + 96 + 97 + 98 + 99 + 100

Находим количество пар в ряде натуральных чисел. В данном случае их 50.

Суммируем первое и последнее числа данного ряда. В нашем примере — это 1 и 100. Получаем 101.

Умножаем полученную сумму первого и последнего члена ряда на количество пар этого ряда. Получаем 101 * 50 = 5050

Следовательно, сумма натуральных чисел от 1 до 100 равна 5050.

Задачи на использование правила Гаусса

А сейчас вашему вниманию предлагаются задачи, в которых в той или иной степени используется правило Гаусса. Эти задачки вполне способен понять и решить четвероклассник.

Можно дать возможность ребенку порассуждать самому, чтобы он сам «изобрел» это правило. А можно разобрать вместе и посмотреть как он сможет его применить. Среди ниже приведенных задач есть примеры, в которых нужно понять как модифицировать правило Гаусса, чтобы его применить к данной последовательности.

В любом случае, чтобы ребенок мог оперировать этим в своих вычислениях необходимо понимание алгоритма Гаусса, то есть умение разбить правильно по парам и посчитать.

Важно! Если будет заучена формула без понимания, то это очень быстро будет забыто.

Задача 1

Найти сумму чисел:

  • 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10;
  • 1 + 2 + 3 + … + 14 + 15 + 16;
  • 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9;
  • 1 + 2 + 3 + 4 + 5 + … + 48 + 49 + 50 + 51 + 52 + 53 + … + 96 + 97 + 98 + 99 + 100.

Вначале можно дать возможность ребенку самому решить первый пример и предложить найти способ, при котором это сделать легко в уме. Далее разобрать этот пример вместе с ребенком и показать как это сделал Гаусс. Лучше всего для наглядности записать ряд и соединить линиями пары чисел, дающие в сумме одинаковое число. Важно, чтобы ребенок понял как образуются пары — берем самое маленькое и самое большое из оставшихся чисел при условии, что количество чисел в ряду четно.

  • 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = (1 + 10) + (2 + 9) + (3 + 8) + (4 + 7) + (5 + 6) = (1 + 10) * 5;
  • 1 + 2 + 3 + … + 14 + 15 + 16 = (1 + 16) + (2 + 15) + (3 + 14) + (4 + 13) + (5 + 12) + (6 + 11) + (7 + 10) + (8 + 9) = (1 + 16) * 8 = 136;
  • 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = (1 + 8) + (2 + 7) + (3 + 6) + (4 + 5) + 9 = (1+ 8) * 4 + 9 = 45;
  • 1 + 2 + 3 + 4 + 5 + … + 48 + 49 + 50 + 51 + 52 + 53 + … + 96 + 97 + 98 + 99 + 100 = (1 + 100) * 50 = 5050

Задача 2

Имеется 9 гирь весом 1г, 2г, 3г, 4г, 5г, 6г, 7г, 8г, 9г. Можно ли разложить эти гири на три кучки с равным весом?

С помощью правила Гаусса находим сумму всех весов:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = (1 + 8) * 4 + 9 = 45 (г)

Далее смотрим, можно ли этот вес разбить на три равных веса:

Читайте так же:
Можно ли отремонтировать разбитый экран телевизора жк

Значит, если мы сможем сгруппировать гири так, чтобы в каждой кучке были гири суммарным весом 15г, то задача решена.

Один из вариантов:

  • 9г, 6г
  • 8г, 7г
  • 5г, 4г, 3г, 2г, 1г

Другие возможные варианты найдите сами с ребенком.

Обратите внимание ребенка на то, что когда решаются подобные задачи лучше всегда начинать группировать с большего веса (числа).

Задача 3

Можно ли разделить циферблат часов прямой линией на две части так, чтобы суммы чисел в каждой части были равны?

Линия разделяет циферблат на 2 части с равной суммой чисел

Для начала к ряду чисел 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 применим правило Гаусса: найдем сумму и посмотрим, делится ли она на 2:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 = (1 + 12) * 6 = 78

Значит разделить можно. Теперь посмотрим как.

По правилу Гаусса у нас получается 6 пар чисел, каждая из которых в сумме дает 13:

1 и 12, 2 и 11, 3 и 10, 4 и 9, 5 и 8, 6 и 7.

Следовательно, надо провести линию на циферблате так, чтобы 3 пары попали в одну половину, а три в другую.

Ответ: линия пройдет между числами 3 и 4, а затем между числами 9 и 10.

Задача 4

Можно ли провести на циферблате часов две прямые линией так, чтобы в каждой части сумма чисел была одинаковой?

Линия разделяет циферблат на 3 части с равной суммой чисел в каждой

Для начала к ряду чисел 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 применим правило Гаусса: найдем сумму и посмотрим делиться ли она на 3:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 = (1 + 12) * 6 = 78

78 делиться на 3 без остатка, значит разделить можно. Теперь посмотрим как.

По правилу Гаусса у нас получается 6 пар чисел, каждая из которых в сумме дает 13:

1 и 12, 2 и 11, 3 и 10, 4 и 9, 5 и 8, 6 и 7.

Следовательно, надо провести линии на циферблате так, чтобы в каждую часть попали по 2 пары.

Ответ: первая линия пройдет между числами 2 и 3, а затем между числами 10 и 11; вторая линия — между числами 4 и 5, а затем между 8 и 9.

Задача 5

Летит стая птиц. Впереди одна птица (вожак), за ней две, потом три, четыре и т. д. Сколько птиц в стае, если в последнем ряду их 20?

Получаем, что нам необходимо сложить числа от 1 до 20. А к вычислению такой суммы можно применить правило Гаусса:

1 + 2 + 3 + 4 + 5 + … + 15 + 16 + 17 + 18 + 19 + 20 = (20 + 1) * 10 = 210.

Задача 6

Как рассадить 45 кроликов в 9 клеток так, чтобы во всех клетках было разное количество кроликов?

Если ребенок решил и с пониманием разобрал примеры из задания 1, то тут же вспоминается, что 45 это сумма чисел от 1 до 9. Следовательно, сажаем кроликов так:

  • первая клетка — 1,
  • вторая — 2,
  • третья — 3,
  • восьмая — 8,
  • девятая — 9.

Но если ребенок сразу не может сообразить, то попробуйте натолкнуть его на мысль о том, что подобные задачи можно решить перебором и надо начинать с минимального числа.

Задача 7

Вычислить сумму, используя прием Гаусса:

  • 31 + 32 + 33 + … + 40;
  • 5 + 10 + 15 + 20 + … + 100;
  • 91 + 81 + … + 21 + 11 + 1;
  • 1 + 2 + 3 + 4 + … + 18 + 19 + 20;
  • 1 + 2 + 3 + 4 + 5 + 6;
  • 4 + 6 + 8 + 10 + 12 + 14;
  • 4 + 6 + 8 + 10 + 12;
  • 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11.
  • 31 + 32 + 33 + … + 40 = (31 + 40) * 5 = 355;
  • 5 + 10 + 15 + 20 + … + 100 = (5 + 100) * 10 = 1050;
  • 91 + 81 + … + 21 + 11 + 1 = (91 + 1) * 5 = 460;
  • 1 + 2 + 3 + 4 + … + 18 + 19 + 20 = (1 + 20) * 10 =210;
  • 1 + 2 + 3 + 4 + 5 + 6 = (1 + 6) * 3 = 21;
  • 4 + 6 + 8 + 10 + 12 + 14 = (4 + 14) * 3 = 54;
  • 4 + 6 + 8 + 10 + 12 = (4 + 10) * 2 + 12 = 40;
  • 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 = (1 + 10) * 5 + 11 = 66.

Задача 8

Имеется набор из 12 гирек массой 1г, 2г, 3г, 4г, 5г, 6г, 7г, 8г, 9г, 10г, 11г, 12г. Из набора убрали 4 гирьки, общая масса которых равна трети общей массы всего набора гирек. Можно ли оставшиеся гирьки расположить на двух чашках весов по 4 штуки на каждой чашке так, чтобы они оказались в равновесии?

Применяем правило Гаусса, чтобы найти общую массу гирек:

1 + 2 + 3 + … + 10 + 11 + 12 = (1 + 12) * 6 = 78 (г)

Вычисляем массу гирек, которые убрали:

Следовательно, оставшиеся гирьки (общей массой 78-26 = 52г) надо расположить по 26 г на каждую чашу весов, чтобы они оказались в равновесии.

Нам не известно какие гирьки были убраны, значит мы должны рассмотреть все возможные варианты.

Применяя правило Гаусса можно разбить гирьки на 6 пар с равным весом (по 13г):

1г и 12г, 2г и 11г, 3г и 10, 4г и 9г, 5г и 8г, 6г и 7г.

Тогда лучший вариант, когда при убирании 4 гирек уберутся две пары из приведенных выше. В этом случае у нас останутся 4 пары: 2 пары на одну чашу весов и 2 пары на другую.

Худший вариант — это когда 4 убранные гирьки разобьют 4 пары. У нас останутся 2 неразбитые пары общим весом 26г, значит их помещаем на одну чашу весов, а оставшиеся гирьки можно поместить на другую чашу весов и они тоже будут 26г.

Деление больших чисел

В жизни есть вещи, делать которые необязательно. Вам необязательно играть в гольф, или расставлять банки на кухне этикетками наружу, или решать до конца газетные кроссворды, а благодаря калькуляторам необязательно и заниматься делением больших чисел. Однако если вас терзает тайное любопытство, способны ли вы сразиться с числами и победить их, не сдерживайте себя. В отличие от таких хобби, как трейнспоттинг[5], синхронное плавание или полировка машины, делить большие числа можно, уединившись у себя дома, так что никто об этом не узнает.

Нечасто при делении одного большого числа на другое получается ровный и точный ответ, но порой и такое случается…

Читайте так же:
Можно ли играть в nfs payback вдвоем

Итак, в общей сложности на наследство претендуют 356 человек, а значит, чтобы выяснить, сколько достанется лично вам, нужно разделить 103 596 на 356. Если вы усвоили все, о чем я говорил в этой главе, то в целом вам должно быть ясно, что к чему. Что касается больших чисел, то разница лишь в том, что вам придется немного поугадывать и поумножать.

Лишние нули

Запомните следующий прием. Положим, вам нужно посчитать, сколько будет 6000 ? 200. Задачу можно существенно упростить, убрав с конца каждого числа одинаковое количество нулей. То есть 6000 ? 200 можно упростить до 60 ? 2, что равняется 30. Так проще!

Так какую же сумму вы унаследовали?

Запишите числа так же, как мы это делали прежде:

Открывайте цифры слева направо, пока не достигнете числа, которое больше 356, вот так:

1 больше 356? Нет.

10 больше 356? Нет.

103 больше 356? Нет.

1035 больше 356? Да!

Значит, первая цифра ответа появится над пятеркой.

Чтобы получить первую цифру, надо выяснить, сколько будет 1035 ? 356. Для простоты подсчета округлим числа: 1035 это примерно 1000, а 356 –примерно 300. Сколько будет 1000 ? 300? Если отбросить по два нуля с конца каждого числа, получится 10 ? 3, то есть ответ равен 3 с остатком. Похоже, 3 – хороший вариант, но не будем спешить…

Проверим нашу догадку: умножим 356 ? 3 и получим 1068. Результат должен быть меньше 1035, стало быть, наше на глазок подобранное число 3 слишком велико. Попробуем лучше 2: посчитав 356 ? 2, выйдет 712.

Записываем 712 под 1035 и вычитаем 1035 ? 712 = 323. Итак, 1035, деленное на 365, дает 2 с остатком 323. Поскольку остаток меньше, чем 356, можно заключить, что двойку мы угадали правильно!

Не без самодовольства записываем 2 в качестве первой цифры ответа.

Пора двигаться дальше, открываем следующую цифру – это 9.

Теперь нам нужно угадать, сколько будет 3239 ? 356. Давайте рискнем и навскидку скажем, что это 8. Быть может, мы ошибаемся, но если нет, это потешит наше самолюбие.

Для проверки умножаем 356 ? 8 = 2848, записываем это число под 3239 и вычитаем, чтобы оценить остаток.

Выходит, что 3239–2848 = 391. Упс!

Остаток 391 больше, чем 356, значит, число 8 нам не подходит. В действительности 356 войдет в 3239 еще раз, так что 9 будет в самый раз.

Для проверки умножаем: 356 ? 9 = 3204. Придется стереть 2848, записать вместо него 3204 и затем вычесть его из 3239.

(Тут самое время напомнить: никто вам не обещал, что будет легко. Однако сейчас мы специально детально рассматриваем каждый шаг; с опытом вы научитесь считать гораздо быстрее.)

Итак, в самом низу у нас получилось 35. Это меньше, чем 365, стало быть, мы правильно угадали цифру 9 и можем записать ее сверху, после двойки.

Двигаемся дальше и открываем последнюю цифру 6.

Вычисляем 356 ? 356. Ура! Нам повезло, потому что выходит ровная, удобная единица. Можно записать ее в ответ, и если вы из тех, кто расставляет банки этикетками в одну сторону, вам наверняка захочется аккуратно завершить расчеты. Умножаем 356 ? 1, пишем результат в самом низу и, вычитая, получаем 356–356 = 0, то есть без остатка.

Вот как выглядит завершенный расчет с дополнительными умножениями в сторонке. Как видите, в процессе деления можно даже выкроить время для художественного самовыражения.

После таких приключений вы, должно быть, позабыли, что мы все это делали с одной целью – узнать, сколько денег вы унаследовали от тетушки. Что ж, 291 фунт не так уж много, но зато новость о том, что у вас есть 355 кузин и кузенов, стоит того, чтобы закатить вечеринку!

Загадка про нечестного официанта

Теперь, когда мы разделались с этими огромными противными числами, я предлагаю вам прекрасную старую загадку о дележе денег. Многие ее слышали, но не каждый способен понять, что в ней к чему.

Три женщины приходят в ресторан пообедать и получают счет на 30 фунтов. Каждая из них дает официанту банкноту в 10 фунтов, но тот, дойдя до кассы, понимает, что в счете ошибка: должно быть 25 фунтов, а не 30. Официант отсчитывает 5 монет по 1 фунту, но по дороге к столику решает отдать каждой женщине по 1 фунту сдачи, а оставшиеся 2 фунта тихонечко положить себе в карман.

Итак, первоначальный счет был на 30 фунтов. После того как женщины получили сдачу, выходит, что они заплатили 3 ? 9 = 27 фунтов, и еще 2 фунта остались в кармане у официанта. 27 + 2 = 29. Куда же делся еще один фунт?

Эта загадка столь хороша, что я не дам ответ на нее сразу, а припрячу его: читайте внимательно, и вы обнаружите его на одной из последних страниц книги. И нечего делать такое лицо: в конце концов, я без промедлений отвечаю на все остальные вопросы!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector