Pmonline.ru

Пром Онлайн
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какое из утверждений верно? 1) любой прямоугольник можно вписать в окружность. 2) все

Какое из утверждений верно? 1) любой прямоугольник можно вписать в окружность. 2) все.

В 2:56 поступил вопрос в раздел Геометрия, который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике «Геометрия». Ваш вопрос звучал следующим образом:

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Самойлова Элеонора Владимировна — автор студенческих работ, заработанная сумма за прошлый месяц 56 414 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

Ответы на вопросы — в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.

Полезные статьи — раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.

Красивые высказывания — цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.

Площадка Учись.Ru разработана специально для студентов и школьников. Здесь можно найти ответы на вопросы по гуманитарным, техническим, естественным, общественным, прикладным и прочим наукам. Если же ответ не удается найти, то можно задать свой вопрос экспертам. С нами сотрудничают преподаватели школ, колледжей, университетов, которые с радостью помогут вам. Помощь студентам и школьникам оказывается круглосуточно. С Учись.Ru обучение станет в несколько раз проще, так как здесь можно не только получить ответ на свой вопрос, но расширить свои знания изучая ответы экспертов по различным направлениям науки.

Прямоугольник

Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам). Площадь прямоугольника равна произведению его смежных сторон. Диагонали прямоугольника равны. Вторая формула нахождения площади прямоугольника исходит из формулы площади четырехугольника через диагонали.

Прямоугольник — это четырехугольник, у которого каждый угол является прямым.

Квадрат — это частный случай прямоугольника.

Прямоугольник имеет две пары равных сторон. Длина наиболее длинных пар сторон называется длиной прямоугольника, а длина наиболее коротких — шириной прямоугольника.

Прямоугольник ABCD

Свойства прямоугольника

1. Прямоугольник — это параллелограмм

прямоугольник с параллельными противоположными сторонами

Свойство объясняется действием признака 3 параллелограмма (то есть ( angle A = angle C ) , ( angle B = angle D ) )

2. Противоположные стороны равны

( AB = CD,enspace BC = AD )

прямоугольник с параллельными противоположными сторонами

3. Противоположные стороны параллельны

( AB parallel CD,enspace BC parallel AD )

прямоугольник с параллельными противоположными сторонами

4. Прилегающие стороны перпендикулярны друг другу

( AB perp BC,enspace BC perp CD,enspace CD perp AD,enspace AD perp AB )

прямоугольник с прилегающими перпендикулярными сторонами

5. Диагонали прямоугольника равны

прямоугольник с равными диагоналями

Согласно свойству 1 прямоугольник является параллелограммом, а значит ( AB = CD ) .

Следовательно, ( triangle ABD = triangle DCA ) по двум катетам ( ( AB = CD ) и ( AD ) — совместный).

Если обе фигуры — ( ABC ) и ( DCA ) тождественны, то и их гипотенузы ( BD ) и ( AC ) тоже тождественны.

Только у прямоугольника из всех фигур (только из параллелограммов!) равны диагонали.

( Rightarrow AB = CD ) , ( AC = BD ) по условию. ( Rightarrow triangle ABD = triangle DCA ) уже по трем сторонам.

Получается, что ( angle A = angle D ) (как углы параллелограмма). И ( angle A = angle C ) , ( angle B = angle D ) .

Выводим, что ( angle A = angle B = angle C = angle D ) . Все они по ( 90^ ) . В сумме — ( 360^ ) .

6. Квадрат диагонали равен сумме квадратов двух прилежащих его сторон

Это свойство справедливо в силу теоремы Пифагора.

7. Диагональ делит прямоугольник на два одинаковых прямоугольных треугольника

( triangle ABC = triangle ACD, enspace triangle ABD = triangle BCD )

прямоугольник с одинаковыми прямоугольными треугольниками

8. Точка пересечения диагоналей делит их пополам

прямоугольник с диагоналями и точкой пересечения

9. Точка пересечения диагоналей является центром прямоугольника и описанной окружности

прямоугольник ABCD с описанной окружностью и центром O

10. Сумма всех углов равна 360 градусов

( angle ABC + angle BCD + angle CDA + angle DAB = 360^ )

11. Все углы прямоугольника прямые

( angle ABC = angle BCD = angle CDA = angle DAB = 90^ )

прямоугольник с прилегающими перпендикулярными сторонами

12. Диаметр описанной около прямоугольника окружности равен диагонали прямоугольника

прямоугольник с описанной окружностью и диагональю равной диаметру

13. Вокруг прямоугольника всегда можно описать окружность

Это свойство справедливо в силу того, что сумма противоположных углов прямоугольника равна ( 180^ )

( angle ABC = angle CDA = 180^,enspace angle BCD = angle DAB = 180^ )

Подготовка к ОГЭ. Задача № 20

Цели: повторение и закрепление, практическое применение усвоенных теоретических знаний при решении заданий модуля геометрия, № 20.

Задачи:

  • Сформировать у учащихся умение использовать приобретенные знания для решения заданий разной направленности;
  • Отрабатывать теоретические геометрические знания;
  • Отработать навыки решения заданий различного типа.
  • Развивать и совершенствовать умения применять накопленные знания в измененной ситуации, делать выводы и обобщения.
  • Подготовка к ОГЭ, воспитывать настойчивость в достижении поставленной цели.

Оборудование: мультимедийная установка, презентация.

Ход урока

Организационный момент

1. Актуализация знаний.

Краткие методические рекомендации

Задание 20 ОГЭ по математике заключается в выборе одного или нескольких верных утверждений из множества данных (в настоящее время — из трёх данных). В большинстве случаев правильный ответ на вопрос задачи связан со знанием простейших геометрических фактов и утверждений. Такие задачи позволяют организовать экспресс повторение большинства определений и теорем школьного курса геометрии с целью быстрой диагностики имеющихся пробелов в знания и последующего устранения этих пробелов. В качестве примеров рассмотрим чуть более сложные задания на выбор верных утверждений из шести данных.

Пример 1. Укажите в порядке возрастания без пробелов, запятых и прочих дополнительных символов номера верных утверждений.

1) Существует прямоугольник, диагонали которого различны.

2) В любом прямоугольнике диагонали равны.

3) Существует ромб, диагонали которого различны.

4) В любом ромбе диагонали равны.

5) Существует трапеция, диагонали которой различны.

6) В любой трапеции диагонали равны.

Решение: По свойству прямоугольника второе утверждение является верным, а первое—нет. Аналогично из оставшихся утверждений верными являются 3 и 5.

Ответ. 235.

Пример 2. Укажите в порядке возрастания без пробелов, запятых и прочих дополнительных символов номера верных утверждений.

1) Существует выпуклый четырёхугольник, все углы которого острые.

2) В любом выпуклом четырёхугольнике все углы острые.

3) Существует выпуклый четырёхугольник, все углы которого прямые.

4) В любом выпуклом четырёхугольнике все углы прямые.

5) Существует выпуклый четырёхугольник, все углы которого тупые.

6) В любом выпуклом четырёхугольнике все углы тупые.

Ответ. Первое утверждение не является верным, поскольку сумма любых четырёх острых углов меньше 360◦ — суммы углов выпуклого четырёхугольника. Второе утверждение не является верным, пример — квадрат. Третье утверждение является верным, пример — прямоугольник. Четвёртое утверждение не является верным, пример — трапеция. Пятое утверждение не является верным, поскольку сумма любых четырёх тупых углов больше 360◦ — суммы углов выпуклого четырёхугольника. По этой же причине не является верным и шестое утверждение.

Ответ. 3.

Формулировка темы и целей урока.

2. Закрепление знаний

Подготовительные задачи

1. Какие из следующих утверждений верны?

1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.

2) Если диагонали параллелограмма равны, то этот параллелограмм является ромбом.

3) Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу.

В ответе запишите номера выбранных утверждений в порядке возрастания без пробелов, запятых и других дополнительных символов.

2. Какое из следующих утверждений верно?

1) Вертикальные углы равны.

2) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.

3) Диагонали трапеции пересекаются и делятся точкой пересечения пополам.

В ответе запишите номер выбранного утверждения.

3. Какое из следующих утверждений верно?

1) Площадь квадрата равна произведению его диагоналей.

2) В параллелограмме есть два равных угла.

3) Боковые стороны любой трапеции равны.

В ответе запишите номер выбранного утверждения.

4. Какое из следующих утверждений верно?

1) Диагонали трапеции пересекаются и делятся точкой пересечения пополам.

2) Площадь параллелограмма равна половине произведения его диагоналей.

3) Вписанный угол, опирающийся на диаметр окружности, прямой.

В ответе запишите номер выбранного утверждения.

5. Какие из следующих утверждений верны?

1) Существуют три прямые, которые проходят через одну точку.

2) Боковые стороны любой трапеции равны.

3) Сумма углов равнобедренного треугольника равна 180 градусам.

В ответе запишите номера выбранных утверждений в порядке возрастания без пробелов, запятых и других дополнительных символов.

6. Какие из следующих утверждений верны?

1) Треугольника со сторонами 1 см, 2 см, 4 см не существует.

2) Площадь трапеции равна произведению основания трапеции на высоту.

3) Все диаметры окружности равны между собой.

В ответе запишите номера выбранных утверждений в порядке возрастания без пробелов, запятых и других дополнительных символов.

7. Какое из следующих утверждений верно?

1) Центр описанной около треугольника окружности всегда лежит внутри этого треугольника.

2) В параллелограмме есть два равных угла.

3) Сумма углов любого треугольника равна 360 градусам.

В ответе запишите номер выбранного утверждения.

8. Какие из следующих утверждений верны?

1) Любые два равносторонних треугольника подобны.

2) В любом прямоугольнике диагонали взаимно перпендикулярны.

3) Все диаметры окружности равны между собой.

В ответе запишите номера выбранных утверждений в порядке возрастания без пробелов, запятых и других дополнительных символов.

9. Какие из следующих утверждений верны?

1) Существует квадрат, который не является прямоугольником.

2) Если в параллелограмме две соседние стороны равны, то этот параллелограмм является ромбом.

3) Все диаметры окружности равны между собой.

В ответе запишите номера выбранных утверждений в порядке возрастания без пробелов, запятых и других дополнительных символов.

10. Какое из следующих утверждений верно?

1) Любой параллелограмм можно вписать в окружность.

2) Касательная к окружности параллельна радиусу, проведённому в точку касания.

3) Сумма острых углов прямоугольного треугольника равна 90 градусам.

В ответе запишите номер выбранного утверждения.

3. Зачетные задачи

1. Какие из следующих утверждений верны?

1) В прямоугольном треугольнике гипотенуза равна сумме катетов.

2) Если в ромбе один из углов равен 90 градусам, то этот ромб является квадратом.

3) Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу.

В ответе запишите номера выбранных утверждений в порядке возрастания без пробелов, запятых и других дополнительных символов.

2. Какое из следующих утверждений верно?

1) Любой прямоугольник можно вписать в окружность.

2) Все углы ромба равны.

3) Треугольник со сторонами 1, 2, 3 существует.

В ответе запишите номер выбранного утверждения.

3. Какое из следующих утверждений верно?

1) Смежные углы всегда равны.

2) Каждая из биссектрис равнобедренного треугольника является его высотой.

3) Существует прямоугольник, диагонали которого взаимно перпендикулярны.

В ответе запишите номер выбранного утверждения.

4. Какое из следующих утверждений верно?

1) Основания любой трапеции параллельны.

2) Диагонали ромба равны.

3) Точка пересечения двух окружностей равноудалена от центров этих окружностей.

В ответе запишите номер выбранного утверждения.

5. Какие из следующих утверждений верны?

1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.

2) Средняя линия трапеции параллельна её основаниям.

3) Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.

В ответе запишите номера выбранных утверждений в порядке возрастания без пробелов, запятых и других дополнительных символов.

6. Какие из следующих утверждений верны?

1) Средняя линия трапеции равна сумме её оснований.

2) Все углы прямоугольника равны.

3) Существуют три прямые, которые проходят через одну точку.

В ответе запишите номера выбранных утверждений в порядке возрастания без пробелов, запятых и других дополнительных символов.

7. Какое из следующих утверждений верно?

1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.

2) Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.

3) Смежные углы всегда равны.

В ответе запишите номер выбранного утверждения.

8. Какое из следующих утверждений верно?

1) Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.

2) Площадь ромба равна произведению двух его смежных сторон на синус угла между ними.

3) Смежные углы всегда равны.

В ответе запишите номер выбранного утверждения.

9. Какие из следующих утверждений верны?

1) В любой прямоугольной трапеции есть два равных угла.

2) Касательная к окружности параллельна радиусу, проведённому в точку касания.

3) Площадь ромба равна произведению его стороны на высоту, проведённую к этой стороне.

В ответе запишите номера выбранных утверждений в порядке возрастания без пробелов, запятых и других дополнительных символов.

10. Какое из следующих утверждений верно?

1) Центр описанной около треугольника окружности всегда лежит внутри этого треугольника.

2) Через заданную точку плоскости можно провести только одну прямую.

3) Диагонали ромба точкой пересечения делятся пополам.

В ответе запишите номер выбранного утверждения.

4. Домашнее задание: (ФИПИ, ОГЭ, модуль геометрия, стр 161-164).

Можно ли вписать любой прямоугольник в окружность

суть: необходимо узнать можно ли вписать задаваемый прямоугольник в задаваемый круг

програмку для вывода прямоугольника и круга составила. вот:

в универе сказали что если расстояние от центра окружности для всех вершин меньше радиуса, то прямоугольниак лежит внутри окружности. Расстояние определяется по теореме Пифагора.
не пойму как это реализовать. подскажите пожалуйста..

и в данном случае можно ли использовать функцию

, ведь там больше координат задается изначально.

хотелось бы используя данную функцию..задавая прямыми не всегда получается именно прямоугольник или же квадрат..

lisica198808
Посмотреть профиль
Найти ещё сообщения от lisica198808
alexander13
Посмотреть профиль
Найти ещё сообщения от alexander13

1. Рисовать в данной задаче ничего не нужно. Вообще.

2. Если стоит вопрос "можно ли вписать", значит, фигуры можно как угодно перемещать на плоскости, поэтому сформулированное Вами условие на 4 вершины не является решением задачи. Чтобы прямоугольник можно было вписать в круг, его диагональ должна быть меньше или равна диаметру.

s-andriano
Посмотреть профиль
Найти ещё сообщения от s-andriano

s-andriano, +1

в универе сказали что если расстояние от центра окружности для всех вершин меньше радиуса, то прямоугольниак лежит внутри окружности.Расстояние определяется по теореме Пифагора.

Если у Вас заданы координаты центра окружности, радиус окружности и координаты всех вершин прямоугольника, то по приведённой Вами цитате можно определить, лежит прямоугольник внутри окружности или нет.
Никаких намёков о "возможности всписать" тут и речи нет!

Определяйтесь, что Вам изначально задано и как сформулирована задача!

Serge_Bliznykov
Посмотреть профиль
Найти ещё сообщения от Serge_Bliznykov
lisica198808
Посмотреть профиль
Найти ещё сообщения от lisica198808

больше всего выбивает ошибок вот таких: expected primary-expression before "int"

я не понимаю хоть убей что не так делаю, и как правильно..помогите разобрать мои ошибки.. препод злюка заявил что должна сама разобрать и никакой подсказки.. а я не понимаю

lisica198808
Посмотреть профиль
Найти ещё сообщения от lisica198808
можно ли вписать задаваемый прямоугольник в задаваемый круг

Вписаный четырехугольник — все вершины лежат на круге.
Т.е. радиус окружности должен быть равен половине диагонали прямоугольника: r = AC/2;
В противном случае можно говорить, например, о том, что прямоугольник может находиться внутри круга, пересекаться с кругом или, как вариант, когда размеры всех сторон прямоугольника больше диаметра круга — круг может разместиться внутри прямоугольника и т.д. (см. вариант с квадратом).
Т.о. ответ должен быть однозначным:
Если r = AC/2, то прямоугольник может быть вписан в окружность, а иначе НЕТ.

2.
Вторая проблема: В вычислениях используются два типа переменных — int и float. Думаю, что проблем станет меньше, если все переменные сделать целого типа.
Помнится, что, например, pow — работает с вещественным типом. Возведение в квадрат лучше реализовать простым перемножением.
Для сравнения радиуса круга и размера диагонали, можно сравнивать квадрат диагонали и квадрат диаметра круга.

Ежели что-то не так, то гуру поправят.

ViktorR
Посмотреть профиль
Найти ещё сообщения от ViktorR

И все же. Надо определиться с условием задачи.

Ежели что-то не так, то гуру поправят.

будет тип float все равно

если гуру это препод — то наш не поправит. он у нас женофоб.

приходится все самой. а без ошибок и недопонимания не умею1 курс всетаки..
а здесь помогут — это хорошо

голоса
Рейтинг статьи
Читайте так же:
Можно ли обновлять игры на прошитой ps3
Ссылка на основную публикацию
Adblock
detector