Pmonline.ru

Пром Онлайн
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защитные диоды TRANSIL и TVS

Защитные диоды TRANSIL и TVS

Окружающая среда, в которой мы живем, загрязнена огромным количеством помех, значительную часть которых создают так называемые переходные процессы. Данные процессы возникают при отключении емкостной или индуктивной нагрузки.

В особенности большие перенапряжения опасны для электронных компонентов. Для подавления таких перенапряжений были разработаны компоненты типа TRANSIL и TVS – защитные диоды, называемые «супрессорами».

Первое производство таких защитных диодов было организованно в 60е годы, на ирландском заводе GSI. Вскоре подобные диоды начала выпускать фирма SGS-Thomson под торговой маркой TRANSIL и TRISL.

В настоящее время электротехнический гигант GENERAL INSTRUMENT(GI) изготавливает диоды GSI. Защитные диоды производства фирмы GI имеют обозначение TVS — Transient Voltage Supressor ( подавитель напряжений переходных процессов). TVS и TRANSIL — это различные коммерческие названия одних и тех же диодов.

Диоды изготавливаются в однонаправленном и в двунаправленном исполнениях. На рис.1 схематически изображены симметричные и несимметричные диоды TRANSIL.

Обозначение диодов супрессоров

Рис.1. Обозначение симметричных (VD1, VD2) и несимметричного(VD3) диодов.

Однонаправленное исполнение (несимметричные супрессоры) применяют для подавления перенапряжений только одной полярности, таким образом диоды TRANSIL данного типа включаются в контур с учетом полярности.

Несимметричные супрессоры используются в сети питания постоянным током. Двунаправленные диоды TRANSIL (симметричные диоды) предназначены для подавления перенапряжений обеих полярностей и используются в сети питания переменного тока и всегда включаются параллельно защищаемому оборудованию.

Такой супрессор может быть составлен из двух однонаправленных диодов TRANSIL путем их встречно-последовательного включения.

Если сравнивать с варисторами, используемыми также для подавления перенапряжений, данные диоды являются более быстродействующими. Время срабатывания супрессоров составляет несколько пикосекунд.

К недостаткам диодов данного типа следует отнести зависимость максимальной импульсной мощности от длительности импульса. Обычно защитные диоды супрессоры используются при таком режиме работы, когда на вход подаются импульсы с минимальным временем нарастания (около 10 мкс) и небольшой длительности.

Основные параметры диодов TRANSIL :

Vrm — постоянное обратное напряжение (Peak Reverse Voltage) — максимальное рабочее напряжение, при котором диод открывается и отводит токовый импульс на «землю», не вызывая выхода защищаемого компонента из строя.
Vbr – напряжение пробоя (Break-down Voltage) — напряжение при котором происходит резкое увеличение протекающего тока, причем скорость увеличения тока превышает скорость увеличения напряжения. Величина напряжения обычно укказывается для температуры 25° C, температурный коэффициент положительный, допустимые отклонения в пределах 5% либо в интервале от — 5 до +10 %.
Vcl — напряжение фиксации (Clamping Voltage) — максимальное напряжение для так называемого «нормализованного» максимального импульса пикового тока Ipp.

Ipp — пиковый импульсный ток (Peak Puls Current) -пиковый ток в рабочем режиме.
Vf — прямое напряжение ( Forward Voltage) — напряжение в прямом направлении. Аналогично обычным диодам оно составляет 0,7 В.
If — прямой ток ( Forward Current) — максимальный пиковый ток в прямом направлении.

Принцип работы супрессора:

Супрессоры имеют нелинейную вольтамперную характеристику. При превышении амплитуды электрического импульса максимального напряжение для конкретного типа диода, то он перейдёт в режим лавинного пробоя.

При поступлении на вход электрического импульса, диод ограничивает данный импульс напряжения до допустимой величины, а “излишки” энергии отводятся через диод на «землю». Более наглядно процесс выглядит на рисунке 2.

Принцип работы супрессора

Рис.2. Принцип работы защитного диода.

На практике при возникновении импульса перенапряжения всегда происходит ограничение, причем вероятность возникновения сбоя в работе минимально.

На случай, если ожидается появление больших перенапряжений в следствии малого импеданса, в цепь рекомендуется включить предохранитель.

Супрессоры характеризуются хорошим быстродействием, то есть время срабатывания данных диодов мало, что является одной из главных причин их широкого использования.

Читайте так же:
Мониторинг принтеров hp zabbix

На рисунке 3 представлены схемы включения диодов TRANSIL с предохранителем.

Схема симметричного диода с предохранителем

Схема несимметричного диода с предохранителем

Рис.3. Схемы включения защитных диодов с предохранителем (а — симметричного. б — несимметричного).

Применение:

Супрессоры специально предназначены для защиты от перенапряжений электронного оборудования автомобилей, цепей телекоммуникации и передачи данных, защиты мощных транзисторов и тиристоров и т д.

Широко применяются такие диоды в импульсных источниках питания. Диоды TRANSIL удобно использовать как для защиты биполярных так и МОП-транзисторов. Супрессоры можно использовать для защиты как управляющего электрода МОП-транзисторов, так и для защиты самого p-n перехода.

При этом стоит всегда учитывать характер импульсов перенапряжения — однократные или периодические.

ExpoElectronica 2020. 23-я международная выставка электронных компонентов, модулей и комплектующих

Минпромторг РФ представил стратегию развития микроэлектроники до 2030 года.

Изменения в ФЗ «Об обеспечении единства измерений»

ЭкспоЭлектроника 2019 — 22-я международная выставка электронных компонентов, модулей и комплектующих

Международная выставка Electronica 2018 прошла с 13 по 16 ноября в Мюнхене (Германия)

Импульсный свет в фотографии

о накамерных вспышках, студийных моноблоках, генераторах и т.п..

  • Вход
  • Регистрация
  • Ссылки
  • Поиск

Текущее время: 10 дек 2021, 21:29

Диоды, стабилитроны, супрессоры

  • Автор
  • Сообщение

Диоды, стабилитроны, супрессоры

  • Цитата

RGP308-RGP310 (используется в Pentax AF-540FGZ)
SM3-06FR (в ранних всп. Canon)
SM3-08FR (Nikon SB-800)
RPG30J
HER306-HER308
FR305-FR307
SF308-SF309
S3L40-S3L60
UF3J-UF3K (smd)
D4F60 (smd), маркировка «4FV»

Изображение Изображение Изображение Изображение

Re: Диоды, стабилитроны, интегрированные стабилизаторы

  • Цитата

https://impulsite.ru/ctlg/parts/stab/d6f.jpg — пятиногая микросхема с маркировкой «D6F» — это сборка защитных стабилитронов EMZ6.8ET2R (на 6,8 В). Спецификация .

Re: Диоды, стабилитроны, интегрированные стабилизаторы

  • Цитата

Диоды проверяют мультиметрами на диапазоне 2k или на прозвонке диодов:

Изображение Изображение Изображение Изображение Изображение

SerpSB писал(а): У меня среди радиодеталей скопилось стабилитроны с различной цветовой маркировкой на корпусе:

Чтобы идентифицировать их необходимо обращаться к справочнику. В журнале «Радиолюбитель» №3 2001 г. я прочитал статью С. Гордиенко «Прибор для проверки полупроводниковых стабилитронов» с простой схемой: https://impulsite.ru/ctlg/instrum/stab- . eb759f.png

По этой схеме изготовил приставку. В своем варианте приставки я применил импульсный трансформатор на ферритовом кольце и напряжение питания приставки снизил до 1,5 вольта. Изменения коснулись также номиналов некоторых компонентов:

Изображение

При напряжении питания 1,5 вольт и потребляемом токе около 36 мА напряжение холостого хода на выходе приставки получилось около 150 вольт. При питании от аккумулятора с напряжением 1,2 вольта выходное напряжение снижается до 130 вольт.
Приставка сохраняет работоспособность при снижении напряжения питания до 0,4 вольта (при этом, соответственно, снижается выходное напряжение), что позволяет во многих случаях использовать для ее питания даже подсевшие элементы.

Детали приставки разместил на печатной плате размерами 60х23 мм. Корпус приставки склеил из листового пластика толщиной 2 мм. Плату в корпусе закрепил термоклеем:

Изображение Изображение Изображение Изображение

Для подсоединения к мультиметру использовал штекеры от его щупов, которые впаял прямо в плату. Для подключения стабилитронов в плату впаял гнезда от разъема 2РМ.
_________________
Владимир SerpSB

Re: Диоды, стабилитроны, интегрированные стабилизаторы

  • Цитата

Стабилитроны.
Стабилитроны мультиметром проверяются так же как диоды. Следует учитывать, что стабилитроны с маленьким напряжением стабилизации, меньше 3-5 вольт, при такой проверке могут открываться в обе стороны. При подключении к цифровому мультиметру стабилитрон звонится в обоих направлениях. Весь фокус в том, что на щупах цифрового мультиметра присутствует около 5 вольт, и поэтому в обратном направление низковольтный стабилитрон тоже открывается. Поэтому не стоит проверять стабилитроны с низким напряжением стабилизации цифровыми мультиметрами, лучше используйте старый аналоговый тестер.
И мультиметром невозможно определить исправность симметричных стабилитронов.

Часто стабилитроны внешне очень похожи на диоды.
Узнать стабилитрон ли это, можно, кратковременно подключая его к источнику постоянного напряжения около 30-40 В последовательно с токоограничивающим резистором, так, чтобы ток через проверяемую деталь был около 1-5 мА. Ну, примерно, резистор 10-20 кОм.
В прямом направлении на диоде и на стабилитроне будет падение напряжения около 0,5-1.0 В.
В обратном направлении на диоде падение напряжения почти как у источника напряжения, не меняется. Диод должен держать такое обратное напряжение. А стабилитрон откроется и на выводах будет напряжение стабилизации.
С высоковольтными стабилитронами немного иначе. Но можно проверять и высоковольтные стабилитроны, если в качестве тестового источника напряжения применить схему от вспышки одноразового фотоаппарата, генерирующую высокое напряжение, как это делают коллеги adash: Высоковольтный генератор для проверки пробивного напряжения и SerpSB: Приставка для проверки полупроводниковых стабилитронов.

Читайте так же:
Замена материнской платы своими руками

Денис Яковлев писал(а): Немного о применении диодов в качестве высоковольтных стабилитронов:

Диоды в качестве стабилитронов. Температурная зависимость Д220 и КД106

Изображение Изображение

Стабилизаторы — неотъемлемая часть радиоэлектронной аппаратуры. Их обычно выполняют на базе источников образцового напряжения, основой которых служит нелинейный элемент. Чаще всего для этой цели используют стабилитроны с напряжением стабилизации от единиц Вольт до 180 В.
Однако при создании слаботочных экономичных источников образцового напряжения на 200…300 В радиолюбителям приходится использовать стабилитроны КС620А, КС650А и им подобные, у которых номинальный ток стабилизации достигает нескольких десятков миллиампер, а это ведет к бесполезным потерям энергии.

Поэтому поиск путей стабилизации напряжения 200. 300 В при малых затратах мощности представляет немалый интерес. Для решения этой задачи были исследованы диоды при обратном их включении в параметрический стабилизатор. Как известно (см., например, И. П. Жеребцов. Основы электротехники.— М: Энергоатомиздат, 1985), на Вольт-амперной характеристике некоторых полупроводниковых диодов при их обратном включении есть участок, который может быть использован для стабилизации напряжения.

В частности, были проверены 100 диодов Д220Б. Результаты измерений показали, что напряжение стабилизации Uст этих диодов имеет значительный разброс — для 60 % из них при токе стабилизации Істобр=300. 600 мкА оно находится в пределах 220. 245 В (рис. 1).

Для определения надежности работы диодов-стабилитронов были проведены их испытания при различной мощности рассеяния. Для этого диоды были включены на напряжение стабилизации 240 В при различных значениях обратного тока в течение 1500 часов. Ни один диод не вышел из строя.

Затем была снята зависимость напряжения стабилизации от температуры (рис. 2).

Изображение

Из графика видно, что при повышении температуры напряжение стабилизации увеличивается. ТК напряжения стабилизации диодов не превышает 0,07 % в интервале от 10 до 80 °С.

М. РАХИМОВ
Радио ,№9 1988г.

Обратите особое внимание на повышение напряжения стабилизации в зависимости от температуры — это чревато не только нестабильностью световой энергии вспышки, но и перенапряжением и выкипанием накопительного конденсатора.

А источников тепла во вспышке предостаточно: пилотный свет, конденсаторы удвоителя, зарядный (и, если есть, разрядный) резистор, сама импульсная лампа. Если детали скомпонованы неудачно, то при интенсивной работе все может окончиться трагично.

От себя замечу, что у диода 2Д106А температурный дрейф напряжения стабилизации отсутствует. А положительный дрейф диода Д220 можно нивелировать, использовав с ним в паре диод, у которого этот дрейф отрицательный — например КД509 (ток 500 мкА — сопротивление в параметрическом стабилизаторе 180 кОм).

Veryutin писал(а): Проверка параметров высоковольтных стабилитронов из Д220 и КД106

Проверялись от источника стабилизированного напряжения — 300 Вольт.
При нагрузке в 10 мегаОм и 1 мегаОм
13 мкА и 130 мкА соответственно.

Читайте так же:
Материнская плата asus p8h77 v характеристики

Стабилитрон подключался к стабилизированным 300 Вольтам последовательно с прибором сопротивлением 10 мегаОм METEX31.

Изображение

— ток 13 мкА.
Потом — параллельно прибору добавлялся резистор 1 мегаОм.
— ток 130 мкА.

Напряжения стабилизации:
напряжения для КД106
168, 171, 163, 172, 170, 167, 175, 186, 142, 172, 155, 176, 185, 180, 192, 152, 162, 183 ,160.
напряжения для Д220
от 100 Вольт до 260 Вольт. Разброс больше.

Зависимость напряжения стабилизации от тока
У КД106 и BZX55 160/120 Вольт — отрицательное динамическое сопротивление.
При увеличении тока от 13 мка до 120 мка — напряжение ПАДАЕТ! на 0.5 Вольт.

У Д220 — положительное.
При увеличении тока от 13 мка до 130 мка — напряжение стабилизации растет на 5 Вольт.

Температурная зависимость
от температуры руки.
У КД106 и BZX 55 160 /120 Вольт — напряжение повышается на 1 Вольт.

У Д220 — напряжение не меняется от температуры руки..

Стабилитроны из КД521-КД522 в качестве высоковольтных стабилитронов

Изображение

Проверялось при 300 Вольтах и двух положениях тока.

Изображение

Напряжение стабилизации — в среднем — около 100 Вольт. Разброс — от 70 Вольт до 130 Вольт.

У меня рабочий ток стабилизации был порядка 40 — 60 мкА. Такие же по параметрам, как и Д220. Набирал 300 Вольт из трех разных диодов.

Защита от обратной полярности: как защитить ваши схемы, используя только диод

Защита от обратной полярности: как защитить ваши схемы, используя только диод Защита от обратной полярности: как защитить ваши схемы, используя только диод

Когда вы меняете полярность питания вашего устройства, могут произойти плохие вещи. Обмен местами положительного и отрицательного выводов питания, вероятно, является основным способом «пускания дыма» от новой блестящей печатной платы, и это на самом деле лучший сценарий, чем нанесение какого-то незначительного урона, который приводит к недоумению и непредсказуемым сбоям. Обратная полярность также может возникать после фазы тестирования и разработки. Устройство, как правило, разработано так, чтобы предотвращать неправильное подключение кабеля конечным пользователем, но даже самые лучшие из нас могут иногда вставлять аккумулятор, не глядя на полярность.

Я предпочитаю использовать все доступные средства, чтобы сделать обратную полярность физически невозможной, но суть в том, что устройство никогда не является действительно безопасным, если сама схема не сможет выдержать напряжение питания обратной полярности. В данной статье мы рассмотрим два простых, но очень эффективных способа сделать вашу схему надежной против ошибок изменения полярности питания.

Что такое диодная защита от обратной полярности?

На самом деле вы можете получить защиту от обратной полярности с помощью одного лишь диода. Да, всё, что вам нужно, это один диод. Это действительно работает, но, конечно, более сложное решение может обеспечить лучшую эффективность.

Идея здесь состоит в том, чтобы поставить в линию питания последовательно диод.

Защита от обратной полярности с помощью диода Защита от обратной полярности с помощью диода

Если вы не знакомы с этим методом, он может показаться немного странным. Может ли диод изменить полярность приложенного напряжения? Может ли он действительно «изолировать» схему, расположенную ниже, от приложенного напряжения?

Он, конечно, не сможет «отменить» обратную полярность, но он может изолировать остальную часть схемы от этого условия просто потому, что он не будет проводить ток, когда напряжение катода выше напряжения анода. Таким образом, в случае обратной полярности наносящие повреждения обратные токи не смогут протекать, и напряжение на нагрузке не будет таким же, как обратное напряжение источника питания, потому что диод работает подобно разрыву в цепи.

Схема LTspice, показанная выше, позволяет нам исследовать переходное и установившееся поведение схемы защиты на основе диода. Первоначально напряжение составляет 0В, затем оно резко изменяется до –3В. Моя идея здесь заключается в том, чтобы имитировать эффект неправильной установки двух аккумуляторов 1,5В (или одной батареи 3В). Моделирование включает в себя сопротивление нагрузке (соответствующее схеме, которая потребляет около 3 мА) и емкость нагрузки (соответствующая блокировочным конденсаторам у нескольких микросхем).

Читайте так же:
Жесткий диск выдает ошибку что делать

Результаты моделирования схемы защиты от обратной полярности с помощью диода Результаты моделирования схемы защиты от обратной полярности с помощью диода

Вы можете видеть, что через диод протекает некоторый обратный ток (т.е. от катода к аноду). Переходной ток очень мал, а ток в установившемся состоянии незначителен. Однако ток течет, и, следовательно, диод со стороны катода не совсем «оторван» от цепи питания; вместо этого в цепи нагрузки имеется очень малое обратное напряжение. Однако это не является установившимся состоянием. Если мы продолжим моделирование до 300 мс, мы увидим следующее:

Результаты моделирования схемы защиты от обратной полярности с помощью диода (продолжительность 300 мс) Результаты моделирования схемы защиты от обратной полярности с помощью диода (продолжительность 300 мс)

Так как емкость нагрузки заряжается и становится разрывом в цепи, ток падает до нуля (точнее, до 0,001 фемтоампера, в соответствии с LTspice), и, следовательно, на нагрузке нет никакого обратного напряжения. Вывод здесь заключается в том, что диод не идеален, но, насколько мне известно, его достаточно, потому что я не могу себе представить, что на какую-то реальную схему могут негативно повлиять

100 мс напряжения обратной полярности в несколько микровольт.

Достоинства и недостатки

К текущему моменту достоинства этой схемы должны быть очевидны: она дешева, чрезвычайно проста и эффективна. Однако есть определенные недостатки, которые необходимо учитывать:

    Во время нормальной работы на диоде падает

Защита от обратной полярности с помощью диода Шоттки

Простым способом смягчения обоих указанных недостатков является использование диода Шоттки вместо обычного диода. Этот подход уменьшает потери напряжения и рассеивание мощности. Я не уверен, как могут вести себя маломощные диоды Шоттки, но в некоторых случаях прямое напряжение может быть ниже 300 мВ.

Вот новая схема моделирования:

Защита от обратной полярности с помощью диода Шоттки Защита от обратной полярности с помощью диода Шоттки

Следующие спецификации дают нам пример характеристик диода BAT54 при прямом напряжении:

Характеристики диода BAT54 при прямом напряжении Характеристики диода BAT54 при прямом напряжении

Ниже показан график переходного и установившегося отклика схемы защиты от обратной полярности на основе диода Шоттки.

Результаты моделирования схемы защиты от обратной полярности с помощью диода Шоттки Результаты моделирования схемы защиты от обратной полярности с помощью диода Шоттки

Вы можете видеть, что обратный ток и обратное напряжение на нагрузке намного больше, чем те, что мы наблюдали с обычным диодом. Этот более высокий обратный ток утечки является известным недостатком диодов Шоттки, хотя в этом конкретном применении обратный ток по-прежнему намного ниже, чем что-либо, что может вызывать серьезную озабоченность. Поэтому, когда дело доходит до защиты от обратной полярности, диоды Шоттки определенно предпочтительны.

Заключение

Мы видели, что один диод представляет собой удивительно эффективный способ включения в схему электропитания устройства защиты от обратной полярности. Диоды Шоттки имеют более низкое прямое напряжение и, следовательно, обычно лучше подходят, чем обычные диоды. Те, кто имел опыт с этими схемами, рекомендуют 1N4001 (если вы по какой-либо причине хотите использовать обычный диод) или MBRA130 (это диод Шоттки).

Защита жесткого диска

Защита жесткого дискаЖесткий диск – один из важнейших компонентов компьютерной системы, ведь именно он отвечает за долговременное хранение информации. Поэтому защита жесткого диска от механических повреждений и программных сбоев – задача номер один в сохранении его работоспособности.

Жесткий диск – очень сложная электронно-механическая конструкция. Но, рассматривая его устройство упрощенно, можно сказать, что жесткий диск состоит из трех основных узлов: магнитных дисков, считывающих магнитных головок и управляющей микросхемы. Выход из строя одного из этих узлов влечет за собой поломку всего винчестера и, как следствие, — потерю данных.

Читайте так же:
Импульсный блок питания увлажнителя воздуха

Принцип работы жесткого диска заключается в следующем. На блок дисков, выполненных из алюминия или керамики и покрытых тонким ферромагнитным слоем, с помощью магнитных головок записывается и считывается информация.

Диски закреплены на шпинделе, который вращается с высокой скоростью, за счет чего создается воздушная подушка между рабочей поверхностью диска и магнитной головкой чтения/записи. Такая подушка предохраняет диск от механического контакта с головкой, ведь в случае удара повреждается поверхность ферромагнитного покрытия, что может привести к потере данных в этом секторе винчестера.

Чтобы этого не произошло, необходимо соблюдать основные правила защиты жесткого диска.

Правило первое — соблюдать температурный режим. Слишком высокая или слишком низкая температура способна оказывать на работоспособность жесткого диска очень большое влияние, ведь под действием температуры изменяются микрогеометрические параметры пластин жесткого диска. И хотя производители современных винчестеров приложили максимум усилий для сведения этого влияния к нулю, все же нежелательно превышать верхнюю границу рабочей температуры жесткого диска, которая составляет 55-60&degС.

Жесткий диск – это устройство с пассивным охлаждением, поэтому для свободной циркуляции воздуха необходимо обеспечить достаточные зазоры между самим жестким диском и элементами корпуса. При этом желательно не располагать винчестеры вплотную друг к другу, рядом с видеокартой, оптическими приводами или другими элементами, активно выделяющими тепло. Кроме того, желательно, чтобы площадь соприкосновения винчестера с металлическими элементами корпуса была достаточно большой – это обеспечит отведение тепла на корпус.

Прибегать к установке устройств активного охлаждения винчестера следует в крайних случаях, очень тщательно и осторожно подойдя к этому вопросу. Дело в том, что вибрация от установленного на винчестере кулера может быть не менее вредна для работы накопителя, чем высокая температура. При повышенной вибрации время на поиск нужной дорожки увеличивается, растет нагрузка на все узлы винчестера и в результате срок работы жесткого диска значительно сокращается.

Защита жесткого диска от ударов и толчков – одно из главных условий правильного обращения с ним. Удар по винчестеру может привести к отклонению головки от своей позиции, вследствие чего случается так называемый хлопок головки – по возвращению в исходное положение головка наносит удар по поверхности диска и повреждает ферромагнитное покрытие. Такая опасность грозит в основном работающему жесткому диску, поскольку в отключенном состоянии магнитные головки современных винчестеров паркуются — автоматически выводятся за пределы поверхности дисков.

Помимо механической защиты жесткого диска, необходимо также обеспечить и его защиту от скачков напряжения. Резкое повышение напряжения вызывает резкое повышение температуры элементов винчестера и может привести к перегреву управляющей микросхемы. Поэтому следует позаботиться о снабжении компьютерной системы исправным блоком питания требуемой мощности, а также источником бесперебойного питания, который подстрахует компьютер на случай неожиданных отключений электроэнергии.

К сожалению, даже соблюдая все предосторожности и правила защиты, не всегда можно уберечь жесткий диск от возникновения неисправностей. Это может быть связано с неправильным подбором комплектации компьютера, некачественными деталями, слишком высокой нагрузкой на систему. Поэтому самый надежный способ застраховаться от потери ценных данных – это резервное копирование данных на сторонние накопители, например, на другие внутренние или внешние жесткие диски, DWD или CD-диски, флэш-накопители.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector