Pmonline.ru

Пром Онлайн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Накопители на жёстких магнитных дисках

Накопители на жёстких магнитных дисках

Первый накопитель на жестких дисках (Hard Disk Drive – HDD) был создан в 1973 г. по технологии фирмы IBM и имел кодовое обозначение «30/30» (двухсторонний диск емкостью 30 + 30 Мбайт), которое совпало с названием известного охотничьего ружья «винчестер», использовавшегося при завоевании Дикого Запада. По этой причине накопители на жестких дисках получили название винчестер. В 1979 г. Ф. Коннер А. Шугарт организовали производство первых жестких пятидюймовых дисков емкостью 6 Мбайт.

По сравнению с дискетами HDD обладают такими преимуществами: значительно большая емкость (чтобы сохранить данные объемом 420 Мбайт, требуется один HDD или около 290 дискет 3,5″ НD) и время доступа для HDD, ,оно на порядок меньше, чем для приводов дискет.

Характеристики накопителей на жестких дисках

Основными характеристиками накопителей на жестких дисках, которые следует принимать во внимание при выборе устройства, являются емкость, быстродействие и время безотказной работы.

Емкость винчестера определяется максимальным объемом данных, которые можно записать на носитель. Реальная величина емкости винчестера достигает сотни гигабайт. Прогресс в области создания и производства накопителей на жестких дисках приводит к тому, что ежегодно плотность записи (и соответственно емкость) увеличивается примерно на 60%.

Среднее время доступа к различным объектам на HDD определяет фактическую производительность накопителя. Время, необходимое винчестеру для поиска любой информации на диске, измеряется миллисекундами. Среднее время доступа винчестеров составляет 7 – 9 мс.

Размер кэш-памяти (быстрой буферной памяти) винчестеров колеблется в диапазоне от 512 Кбайт до 2 Мбайт.

Скорость передачи данных (Maximum Data Transfer Rate – MDTR) зависит от таких характеристик винчестера, как число байт в секторе, число секторов на дорожке, скорость вращения дисков.

Время безотказной работы для накопителей определяется расчетным среднестатистическим временем между отказами (Mean Time Between Failures – MTBF), характеризующим надежность устройства, указывается в документации и обычно составляет 20000 – 500000 ч. Практика показывает, что если накопитель на жестком диске безотказно работает на протяжении первого месяца гарантийного срока, он будет так же безотказно работать до окончания срока своего морального старения.

Накопители на жестком магнитном диске устанавливаются в системный блок и невидимы для пользователя. Диск вращается непрерывно. Герметизация диска позволила добиться его качественного улучшения благодаря идеальной чистоте рабочей поверхности диска. Данные запоминаются на магнитной поверхности диска на дорожках, представляющих собой концентрические окружности, а информация с диска считывается специальными магнитными головками. Подобно дискетам, жесткий диск делится па дорожки и секторы.

Сменные жесткие диски

Сменные жесткие диски используются при необходимости размещения больших объемов данных на малогабаритных носителях. У сменного винчестера переносным является не только носитель информации, но и весь дисковод, который вынимается из своих направляющих в корпусе ПК. Чаще всего это IDE диски, которые устанавливаются в корпус компьютера. Для извлечения дисковода на передней панели имеется специальная ручка. С обратной его стороны находится адаптер, который обычно обеспечивает силовое питание и связь для приема/передачи данных. Использование сменного жесткого диска такого рода для частого обмена информацией между удаленными ПК не дает желаемых результатов в связи с недостаточной защищенностью от внешних воздействий, возникающих при их транспортировке. Рекомендуется использовать сменные жесткие диски главным образом для целей архивирования данных.

Существуют следующие модели накопителей на сменных жестких дисках: SyQuest, SyJet, SparQ, ЕZFlaer, Jaz, Zip, ORB.

История жестких дисков — от первого HDD до SSD

1965 IBM 2310

Новости

Первый жесткий диск разработала компания IBM в 1956 году, и вошел он в историю как начало компьютерной индустрии.

Дисковод IBM 350 состоял из 50 пластин диаметром 24 дюйма - все имело невероятную емкость 5 МБ

Дисковод IBM 350 состоял из 50 пластин диаметром 24 дюйма и имел невероятную емкость — 5 МБ

Вы знали, что первый жесткий диск был медленный, весил тонну и имел 5 МБ? Сегодня в его огромном корпусе можно было бы уместить тысячи современных накопителей HDD или SSD. В данной статье подведены итоги почти шестидесятилетий истории жестких дисков. Так что удобно устраивайтесь в креслах и пересмотрите какая была история развития жесткого диска.

В самом начале стоит упомянуть, что история жестких дисков начинается с XIX века, когда были запатентованы первые перфокарты. Однако это решение не было совершенным, и до начала Второй мировой войны перфокарты были заменены на барабан памяти.

Читайте так же:
Лучшие жесткие диски hdd 2018

жесткий диск история

IBM 350 1956

IBM 350 оказался настоящим прорывом в области хранения данных из которого и началась история hdd. Благодаря использованию 50 магнитных пластин диаметром 24 дюйма, вращающихся со скоростью 1200 оборотов в минуту, он практически во всех отношениях шел впереди популярных тогда решений.

1965 IBM 2310

1965 IBM 2310

В 1956-61 годы компания IBM выпустила более 1000 компьютеров IBM 305 RAMAC, оборудованных дисковыми накопителями. Несмотря на то, что прошло уже 60 лет, современные жесткие диски все еще работают по тому же принципу что и IBM 350.

1970 год IBM 3300

1970 год IBM 3300

Вскоре, основываясь на опыте с модели 350, компания IBM начала создавать все более и более мощные конструкции. Жесткий диск IBM 1301 с 1961 года мог хранить 28 МБ данных на 25 дисках. Каждый из них имела специальную головку, что позволило сократить время доступа к данным от 600 до 180 мс. В 1965 году был создан модуль хранилища IBM 2310, использующий сменные картриджи объемом 1 МБ.

В 1970 году дебютировала на рынке модель IBM 3300 с поворотным механизмом коррекции ошибок. Система состояла из двух модулей со сменными носителями, и стоила в сегодняшнем эквиваленте около 400 тыс. долларов. Один носитель данных (так называемый Disk Pack) содержал в себе 11 дисков диаметром 14-дюймов и имел емкость 100 МБ, а начиная с 1974 года – 200 МБ. Модули можно было комбинировать друг с другом, так что жесткие диски первый раз были в состоянии предложить гигабайтовые емкости. По-прежнему серьезным препятствием были большие размеры привода.

Магнитные диски HDD в первый раз встретились с реальной конкуренцией в 1976 году. Компания Dataram представила тогда привод Bulk Core, который сегодня считается родоначальником дисков SSD (Solid State Drive). В них использовалась так называемая ферритовая память, характерной чертой которой было отсутствие механических элементов. Время доступа к данным составляло всего 2 мс.

1980 год диск ST-506 фото

1980 год диск ST-506

Решение было интересным, но также очень дорогим и непрактичным. Если перевести цену памяти Bulk Core на нынешние условия, то 1 ТБ дискового пространства обойдется около 1,6 млрд долларов. Билл Гейтс на все свое состояние сможет купить около 49 ТБ пространства для хранения данных. Немного, как для самого богатого человека в мире.

Настоящая революция в индустрии жестких дисков состоялась только в 1980 году, когда компания Shugart Technology представила диск ST-506. Он обеспечивал объем такой же, как IBM 350 в 1956 году, то есть 5 МБ. Однако имел „миниатюрный” формат в 5,25 дюйма и весил „всего” 3,2 кг. Его можно было уместить в первых корпусах ПК. ST-506 одержал рыночный успех, а компания Shugart сегодня известна как Seagate.

Еще одним важным новшеством на рынке была премьера диска Rodime RO352 в 1983 году. Эта несуществующая уже шотландская компания умудрилась уместить накопитель HDD объемом 10 МБ в 3,5-дюймовом корпусе. Так родился стандарт, который до сегодняшних дней используют все модели жестких дисков.

80-е годы на рынке жестких дисков стали периодом миниатюризации и стандартизации. Появились интерфейсы SCSI и IDE, а японский концерн Toshiba во второй половине десятилетия разработал технологию памяти полупроводниковых NAND flash.

В 1988 году на рынке дебютировал первый жесткий диск в формате 2,5 дюйма — PrairieTek 220 емкостью 20 МБ. Так же, как Rodime RO352, он считался важным прорывом в эволюции HDD. Десять лет спустя диски 2,5 дюйма стали массово использоваться в ноутбуках. В 2006 году формат 2,5 дюйма стал стандартом на рынке жестких дисков с интерфейсом SATA.

Seagate представила диск емкостью 2,1 ГБ

1992 год — Seagate представила диск емкостью 2,1 ГБ

В начале 90-х развитие жестких дисков ускорилось в результате бума на ПК. IBM первую гигабайтную модель HDD вывел на рынок уже в 1991 году. Это была модель 0663 Corsair — 3,5-дюймовая конструкция с 8 дисками. Год спустя компания Seagate представила диск емкостью 2,1 ГБ с дисками, вращающимися со скоростью 7200 оборотов в минуту.

1980 год диск ST-506

1980 год диск ST-506

В 1995 году израильская компания M-Systems разработала первый диск FFD (Fast Flash Disk), который своим форматом 3,5 дюйма был похож на классические жесткие диски, однако при этом имел основу NAND. Он не имел никаких движущихся элементов, предлагал очень короткое время доступа и, что особенно важно, считался исключительно прочным и надежным. Решения, рожденные под аббревиатурой FFD стоили кучу денег, но пришлись по вкусу военным. Также они стали использоваться для регистраторов полета, в народе называемые черными ящиками.

Читайте так же:
Мощный аккумулятор для ноутбука

Конец XX века — это времена пластин вращающихся с огромными скоростями. В 1996 году компания Seagate создала жесткие диски семейства Cheetah. Первые модели разгонялись до 10000 оборотов в минуту, а в моделях Cheetah X15 с 2000 года диски вращались со скоростью 15000 об. Это были самые быстрые жесткие диски с интерфейсом IDE. Оценили их за эффективность, но не одобрили из-за производимого высокого шума.

Можно с уверенностью сказать, что XXI век наступил для жестких дисков в конце 2002 года, наряду с выпуском универсального интерфейса SATA. Новое поколение накопителей HDD полюбили игроки. Особенно те, которые могли позволить себе покупку двух дисков и соединение их в массив RAID0.

Современный SSD диск

Разъем SATA быстро стал стандартом, и так же быстро начал развиваться. В 2004 году дебютировала вторая генерация (SATA II 3 Gb/s), а спустя пять лет — третья (SATA III 6 Gb/s). Когда в 2006 году начали дешеветь дорогие раньше флеш-памяти NAND, HDD заимели серьезного конкурента в виде первых SSD.

Пионерами новой технологии стали два рынка ведущих производителей – Samsung и SanDisk. В 2010 году к ним присоединилась компания Plextor, известная своим производством надежных оптических приводов.

Емкость жестких дисков в 1 ТБ была достигнута в 2007 году компанией Hitachi. Для достижения той же емкости с помощью первого жесткого диска, нужно соединить друг с другом 200 тысяч модулей IBM 350. Если предположить, что каждый из них весил тонну, то их суммарная масса соответствует массе двух атомных авианосцев или одного супертанкера. Это было девять лет назад. Сегодняшние жесткие диски способны поместить на 3,5-дюймовом носителе более 10 ТБ данных.

Современные флеш-накопители все еще не предлагают таких емкостей, однако имеют другой, более важный козырь – недостижимую для жестких дисков скорость чтения и записи данных. Сочетание высокопроизводительных контроллеров и все более дешевых NAND flash, привело к очередной революции. Сегодня все чаще ssd рассматриваются в качестве хранилища данных, как бы возвращаясь к своим корням. В новых компьютерах жесткий диск, история создания которого началась более полувека назад, все чаще и чаще заменяется меньшими, но многократно более эффективными твердотельными накопителями.

Откуда эта перемена? Генерирует ее падения цен на SSD, а также растущие потребности пользователей, особенно геймеров. Почти десять лет назад первые доступные в магазинах диски SSD предлагали 32 ГБ пространства для хранения данных и стоили столько же, сколько новый ноутбук среднего класса (около 700 долларов).

Сегодня популярны модели объемом 500 ГБ — 1 ТБ, можно купить за гораздо более низкую цену. Емкость такого носителя вполне достаточна для тех, у кого данные хранятся вне компьютера – на внешнем диске или в интернет-облаке. В 2007 году о SSD можно было только мечтать. Сегодня же с его помощью, можно за относительно небольшую цену модернизировать свой персональный компьютер.

6.7.2. Накопители информации на жестких магнитных дисках

Накопители информации на жестких магнитных дисках (НЖМД), также как и НГМД, относятся к внешним ЗУ и предназначены для долговременного хранения больших объемов информации. НЖМД относятся к ЗУ с прямым (произвольным) доступом к данным и подразделяются на внутренние, устанавливаемые в системный блок компьютера, и внешние (переносные) по отношению к системному блоку.

В настоящее время пять ведущих фирм в области производства НЖМД, таких как Seagate, Maxtor, Western Digital, Hitachi и Samsung, производят НЖМД разных объемов, от десятков и сотен гигабайт, в соответствии с рядом: 20, 30, 40, 60, 80… 200 Гбайт и т. д. Накопители информации на жестких магнитных дисках (HDD – Hard Disk Drive), которые также называют винчестерами, являются обязательным компонентом ПК. Название «винчестер» применительно к НЖМД было впервые использовано компанией IBM в 1973 г.

Читайте так же:
Макбук перестал видеть жесткий диск

Запись и считывание информации в НЖМД реализуется также, как в НГМД, посредством электромагнитного способа, т. е. информация записывается на магнитное покрытие диска и считывается с него.

Конструктивно НЖМД выполнен в виде электронно-механического единого устройства, которое устанавливается в системный блок компьютера. В корпусе этого устройства установлены и объединены такие блоки и элементы, как носители информации (диски), двигатель дисковода, управляющий двигатель, электромагнитные головки записи и считывания информации, устройство позиционирования электромагнитных головок и электронный блок, обеспечивающий обработку данных и управление механическими устройствами НЖМД, а также микросхемы кэш-памяти. Упрощенная конструкция НЖМД представлена на рис. 6.8. Если в НГМД применяется один гибкий диск, то в НЖМД используется несколько дисковых пластин, расположенных одна над другой. Диски изготовлены из жесткого материала, в основном алюминия, который покрыт магнитным слоем. Диски заключены в герметически закрытый корпус, что практически изолирует их от внешней среды и предотвращает попадание пыли или других частиц, которые могут повредить магнитную поверхность дисков или электромагнитные головки. Для доступа к информации в НЖМД один двигатель дисковода вращает пакет дисков, а управляющий устанавливает головки в место считывания или записи информации. У каждого диска имеется своя пара электромагнитных головок, которые приводятся в движение и позиционируются при помощи управляющего (шагового) двигателя. При этом позиционирование одной головки вызывает аналогичное перемещение и всех остальных.

Рис. 6.8. Упрощенная конструкция НЖМД

Все современные НЖМД имеют в своем составе микросхемы кэш-памяти объемом от 2 до 8 Мбайт. Наличие кэш-памяти позволяет повысить производительность НЖМД за счет хранения в ней промежуточных данных, необходимых МП в процессе обработки информации. Обмен информацией между НЖМД и МП компьютера осуществляется через контроллер НЖМД. Контроллер НЖМД представляет собой микрокомпьютер специализированного назначения, который обеспечивает обмен информации между НЖМД и МП по определенным правилам и протоколам, называемых интерфейсом.

Для внутренних НЖМД в настоящее время широко используется интерфейс IDE (Integrated Disk Electronic) и быстродействующий интерфейс SCSI (Small Computer System Interface).

Перечислим основные характеристики НЖМД:

• объем памяти (информационная емкость) десятки и сотни гигабайт;

• время доступа, т. е. интервал времени между моментом, когда микропроцессор запрашивает данные с диска, и моментом их выдачи. Среднее время доступа для современных НЖМД 7–9 мс;

• средняя скорость считывания и записи информации – составляет 60 Мбайт/с;

• скорость вращения шпинделя дисков от 5400 до 7200 об./мин;

• объем кэш-памяти 2–8 Мбайт.

Таким образом, если сравнивать характеристики НГМД и НЖМД, то последние имеют преимущества перед первыми по трем основным характеристикам: объему памяти, скорости обмена информацией (скорости записи и считывания информации) и времени доступа.

Также как и для дискеты, для записи информации на жесткий магнитный диск и ее считывания, диск должен быть отформатирован, т. е. на жестком магнитном диске должна быть создана физическая и логическая структура. Первоначальное физическое форматирование жесткого диска осуществляет фирма – производитель НЖМД.

Формирование физической структуры жесткого магнитного диска, также как и гибкого, состоит в создании на диске концентрических магнитных дорожек (треков), которые в свою очередь делятся на сектора и кластеры (см. рис. 6.6). Для этого в процессе форматирования диска магнитные головки дисковода расставляют в определенных местах магнитного диска соответствующие метки.

Форматирование жесткого диска может быть реализовано и с помощью специальных компьютерных программ. В ОС Windows ХР имеется программа, позволяющая осуществить форматирование жесткого магнитного диска, форматирование производится так же, как для гибкого магнитного диска (см. рис. 6.5).

Логическая структура жесткого диска отличается от логической структуры гибкого диска, поскольку формируется с помощью файловых систем – FAT16, FAT32, NTFS. Для логической структуры жесткого диска характерно то, что минимально адресуемой областью памяти является кластер, который может содержать несколько секторов. Размер кластера определяется типом используемой файловой системы (см. табл. 6.3–6.5) и зависит от объема жесткого диска. Файлам при этом всегда выделяется целое число кластеров.

Для поиска файлов по их имени на жестком диске файловая система автоматически создает каталог и таблицу размещения файлов.

Как уже отмечалось в п. 6.5, в файловых системах FAT16, FAT32, NTFS предусмотрена возможность с помощью специальной системной программы проводить условное разбиение жестких дисков на несколько логических дисков. Полученные при разбиении жесткого диска логические диски не существуют как отдельные физические устройства, а представляют лишь часть одного физического диска. Такое разбиение позволяет более рационально использовать жесткий диск, так как при этом каждый логический диск имеет собственный каталог и таблицу размещения файлов. В результате этого на каждом логическом диске действует своя система адресации и потери из-за размеров кластеров становятся меньше. Кроме того, такое разбиение полезно, если на компьютере работают несколько пользователей и каждому принадлежит свой логический диск.

Читайте так же:
Можно поменять процессор на ноутбуке asus

Логическим дискам присваиваются имена, в качестве которых используются буквы латинского алфавита [С: ], [D: ], [Е: ], [F: ] и т. д.

Процедуры записи информации на жесткий магнитный диск и считывания пользовательской информации аналогичны процедурам, используемым для записи информации на гибкий диск и считывания с гибкого диска.

Удаление ненужных файлов и папок с НЖМД производится так же, как и в НГМД. Однако после подтверждения удаления файлов или папок они не будут удалены в НЖМД (при условии, что не установлена опция уничтожения файлов сразу после удаления, не помещая их в корзину), а только перемещены в папку «Корзина», из которой затем их можно будет восстановить.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Глава 10 Кратко о дисках

Глава 10 Кратко о дисках Работа на компьютере сводится к обработке информации. Информация, которая содержится в файлах, может быть самой разной – текстовой, графической, аудио, видео и т. д. Данные, как уже обработанные, так и ожидающие очередь, нужно где-то хранить. Для

22.4 Репозитории на компакт-дисках

22.4 Репозитории на компакт-дисках Всё, про что я рассказывал выше, касалось в первую очередь интернет-репозиториев и установки приложений из них. Однако было бы странно, если бы единственной возможностью получить новое программное обеспечение было бы скачивание его из

1.1. Общая информация об оптических дисках

1.1. Общая информация об оптических дисках Современные диски чаще всего попадают в одну из двух категорий – CD или DVD. Обе категории основаны на одном принципе записи и в то же время отличаются друг от друга объемом записанной на них информации и другими техническими

6.7.1. Накопители информации на гибких магнитных дисках

6.7.1. Накопители информации на гибких магнитных дисках В качестве накопителей информации используются внешние ЗУ, которые реализуются в виде соответствующих технических средств для хранения информации. Все накопители, применяемые в персональном компьютере, по

6.7.2.1. Внутренние накопители информации на жестких магнитных дисках

6.7.2.1. Внутренние накопители информации на жестких магнитных дисках Накопители информации на жестких магнитных дисках (НЖМД), также как и НГМД, относятся к внешним ЗУ и предназначены для долговременного хранения больших объемов информации. НЖМД относятся к ЗУ с прямым

6.7.2.2. Внешние накопители информации на жестких магнитных дисках

6.7.2.2. Внешние накопители информации на жестких магнитных дисках Внешние (переносные) накопители информации на жестких магнитных дисках, также как и внутренние НЖМД, предназначены для долговременного хранения больших объемов информации (десятки и сотни гигабайт) и

6.7.3. Накопители информации на основе флэш-памяти

6.7.3. Накопители информации на основе флэш-памяти Накопители информации на основе флэш-памяти относятся к внешним (переносным) ЗУ и предназначены для долговременного хранения относительно небольших объемов информации (единицы гигабайт). Накопители информации на основе

6.7.4. Накопители информации на оптических дисках

6.7.4. Накопители информации на оптических дисках 6.7.4.1. Классификация, способ записи и считывания информации Накопители информации на оптических дисках относятся к внешним ЗУ и предназначены для долговременного хранения относительно больших объемов информации (сотни

6.7.4.3. Накопители информации на цифровых универсальных дисках

6.7.4.3. Накопители информации на цифровых универсальных дисках Современные компьютерные накопители информации на цифровых универсальных дисках относятся к комбинированным накопителям, которые позволяют использовать (считывать и записывать информацию) как

6.7.5. Магнитооптические накопители информации

6.7.5. Магнитооптические накопители информации Магнитооптические накопители информации (МО) относятся к внешним ЗУ и предназначены для долговременного хранения относительно больших объемов информации (до нескольких гигабайт). МО относятся к ЗУ с прямым (произвольным)

6.7.6. Ленточные накопители информации

6.7.6. Ленточные накопители информации Ленточные накопители информации (стримеры) относятся к внешним ЗУ и предназначены для долговременного хранения больших объемов информации (десятки гигабайт). Данные накопители относятся к ЗУ с последовательным доступом к данным. В

Читайте так же:
Материнская плата am4 atx

Принципы хранения данных на лазерных дисках

Принципы хранения данных на лазерных дисках На лазерных, или оптических, дисках информация записывается благодаря разной отражающей способности отдельных участков такого диска. Все оптические диски схожи тем, что носитель (диск) всегда отделен от привода, который

Даёшь киношку: материализация магнитных вихрей-скирмионов может пригодиться при переходе на видеоформат 4К Михаил Ваннах

Даёшь киношку: материализация магнитных вихрей-скирмионов может пригодиться при переходе на видеоформат 4К Михаил Ваннах Опубликовано 16 августа 2013 Когда-то, в СССР, партия заботилась о просвещении масс. И если в пионерлагерь привозили

Диагностика жестких дисков

Диагностика жестких дисков Жесткие диски – отчасти механические устройства, а не только электронные платы. А механика, как мы знаем, может выходить из строя. Сила трения? И она тоже! Одним словом, в один не очень прекрасный момент ваш жесткий диск может «посыпаться», то

Устройство жесткого диска

Считывающая головка жесткого диска

Структура жесткого диска частично напоминает слоёный пирог. Несколько дисков собраны на одной оси и расположены точно друг над другом. Эта система дисков вращается на немалой скорости вокруг своей оси. Головки четко определяют нужное место на дисках, где считывают или же записывают информацию.

Как происходит запись информации на диск

Информация хранится на дисках, изготовленных из полированного алюминия или стекла, и покрытых несколькими слоями специального состава, который образует на поверхности ферромагнитную пленку.
Запись информации на диски происходит с помощью системы магнитных головок, перемещающихся в пространстве между дисками.
Головки не касаются поверхности дисков. Расстояние между ними и дисками в 5 тыс. раз меньше толщины человеческого волоса.
Когда головки позиционируются в нужном месте, подается токовый импульс для создания магнитного момента той или иной направленности — в результате на диск будет записан либо логический «0», либо логическая «1». Каждый такой «0» или «1» называется Бит. Значение бита соответствует ориентации магнитного поля — плюсу или минусу.
Каждый квадратный сантиметр поверхности содержит в себе 31 миллиард битов.

Как происходит считывание информации с диска

Для считывания информации с диска служат те же магниторезистивные головки. Диски вращаются, а головки перемещаются по концентрическим окружностям-дорожкам информации, Обеспечивается доступ головок к данным на дисках.
В головке протекает ток такой силы, которая пропорциональна изменению магнитного поля. Информация, считанная магнитной головкой, — это аналоговый сигнал, для обработки процессором он перекодируется. Так, в результате получается «цифра» (необходимый любому микропроцессорному устройству бинарный код).

Какие могут быть повреждения жесткого диска

Необходимо исключить возможность порчи магнитного слоя дисков головками. Слишком велика вероятность их падения при отключении электропитания. По-этому, при остановке жесткого диска, головки перемещаются в определенную точку, над неиспользуемыми частями диска, и там фиксируются. Этот процесс называется — Парковка.

Объём винчестера

Скажем несколько слов и о разбивке всего объёма хранимой информации на определённые разделы. Блок головок перемещается вдоль поверхности дисков. Следовательно, в одно и то же время головки размещены над своими дисками, но дорожка будет одна. Так получается цилиндр, если посмотреть на описанную систему со стороны. Каждая дорожка разбита на несколько секторов по 512 байт хранимой информации. Зная, сколько в жёстком диске головок, секторов и цилиндров, можно перемножить эти значения. Полученный результат — предполагаемый объём винчестера.

Представление информации и процесс преобразования

Чтобы облегчить процесс производства дисков, дорожки располагают как можно ближе друг к другу, таким образом уменьшается число дисков в блоке. Всё сказанное выше о разбивке винчестера относится к физическому размещению. Компьютер же использует логическое размещение. Данные разбивки, необходимые программе Setup, можно обнаружить на самом корпусе устройства. Допуск головок в требуемое место диска обеспечивается блоком трансляции, который расположен непосредственно на винчестере. Так осуществляется процесс преобразования логического представления информации в физическое представление.

Производителем в процессе изготовления, изначально допускается некоторое число бракованных секторов, однако винт в целом должен обеспечивать необходимый объём. Такие бракованные сектора помечаются при процедуре низкоуровневого форматирования, а во время дальнейшей работы устройства эти участки просто-напросто не учитываются.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector